Flächennormalenvektor

Flächennormalenvektor

In der Geometrie ist ein Normalenvektor (auch: Normalvektor) ein Vektor, der senkrecht (orthogonal) auf einer Geraden, Kurve, Ebene, (gekrümmten) Fläche oder einer höherdimensionalen Verallgemeinerung eines solchen Objekts steht. Die Gerade, die diesen Vektor als Richtungsvektor besitzt, heißt Normale. Ein Normaleneinheitsvektor ist ein Normalenvektor der Länge 1 (ein sogenannter normierter Vektor).

In diesem Artikel wird zunächst der Fall der Geraden (in einer Ebene) und der Ebene (im dreidimensionalen Raum) behandelt (Lineare Algebra und analytische Geometrie), dann der Fall der ebenen Kurve und der Fläche (Differentialgeometrie).

Inhaltsverzeichnis

Lineare Algebra und analytische Geometrie

In diesem Abschnitt werden die Variablen für Vektoren, wie in der Schulmathematik üblich, durch Vektorpfeile gekennzeichnet.

Normale und Normalenvektor einer Geraden

Ein Normalenvektor einer Geraden g in der Ebene ist ein (vom Nullvektor verschiedener) Vektor, der senkrecht auf dieser Geraden steht, also der Richtungsvektor einer Geraden, die senkrecht auf g steht (Orthogonale oder Normale zu g).

Hat g den Richtungsvektor \vec v = (a, b), so sind die beiden Vektoren ( − b,a) und (b, − a) Normalenvektoren. Durchläuft man die Gerade in der Richtung von \vec v, so weist ( − b,a) nach links und (b, − a) nach rechts.

Ist die Gerade in der Steigungsform durch die Gleichung

y = mx + c

gegeben, so ist der Vektor (1,m) ein Richtungsvektor der Geraden und ( − m,1) und (m, − 1) sind Normalenvektoren. Für m \ne 0 hat also jede Normale die Steigung - \tfrac 1m. Ist m = 0, also g horizontal, so ist jede Normale vertikal, hat also eine Gleichung der Form x = a.

Ist die Gerade in der allgemeinen Form

ax + by = d

gegeben, so ist (a,b) ein Normalenvektor.

Hat man einen Normalenvektor, so erhält man einen Normaleneinheitsvektor, indem man diesen durch seine Länge (Norm, Betrag) dividiert (den Vektor also normiert). Einen zweiten Normalenvektor erhält man durch Multiplikation mit − 1. Aus einem Normalenvektor erhält man alle anderen durch Multiplikation mit einer reellen Zahl ungleich null.

Normale und Normalenvektor einer Ebene

Ein Normalenvektor einer Ebene E im dreidimensionalen Raum ist ein (vom Nullvektor verschiedener) Vektor, der senkrecht auf dieser Ebene steht, also der Richtungsvektor einer Geraden, die senkrecht auf E steht (Orthogonale oder Normale zu E).

Ist die Ebene in der Normalform

ax + by + cz = d

gegeben, so ist (a,b,c) ein Normalenvektor.

Ist E durch zwei aufspannende Vektoren \vec u = (u_1, u_2, u_3) und \vec v = (v_1, v_2, v_3) gegeben (Punkt-Richtungs-Form oder Parameterform), führt die Bedingung, dass der Normalenvektor \vec n = (n_1, n_2, n_3) senkrecht auf \vec u und \vec v steht, auf ein lineares Gleichungssystem für die Komponenten n1,n2,n3 von \vec n:

\begin{align} u_1 \, n_1 + u_2 \, n_2 + u_3 \, n_3 &= 0 \\ v_1 \, n_1 + v_2 \, n_2 + v_3 \, n_3 &= 0
\end{align}

Jede von (0,0,0) verschiedene Lösung liefert einen Normalenvektor.

Eine andere Möglichkeit, Normalenvektoren zu bestimmen, bietet das Kreuzprodukt:

\vec u \times \vec v = \begin{pmatrix}
u_2 \cdot v_3 - u_3 \cdot v_2 \\
u_3 \cdot v_1 - u_1 \cdot v_3 \\
u_1 \cdot v_2 - u_2 \cdot v_1
\end{pmatrix}

ist ein Vektor, der senkrecht auf \vec u und \vec v steht, und \vec u, \vec v, \vec u \times \vec v bilden in dieser Reihenfolge ein Rechtssystem.

Hat E die Gleichung

z = ax + by + c,

so ist ( − a, − b,1) ein nach oben weisender und (a,b, − 1) ein nach unten weisender Normalenvektor.

Wie im Fall der Geraden in der Ebene erhält man aus einem Normalenvektor einen Normaleneinheitsvektor, indem man ihn durch seine Länge dividiert, einen zweiten durch Multiplikation mit − 1 und alle andern Normalenvektor durch Multiplikation mit reellen Zahlen.

Eine Ebene wird durch einen Normalenvektor sowie einen auf der Ebene liegenden Punkt eindeutig bestimmt, siehe Normalenform und hessesche Normalform.

Normalenvektoren von Kurven und Flächen

Ebene Kurven

In der Analysis und in der Differentialgeometrie ist der Normalenvektor zu einer ebenen Kurve (in einem bestimmten Punkt) ein Vektor, der auf dem Tangentialvektor in diesem Punkt orthogonal (senkrecht) steht. Die Gerade in Richtung des Normalenvektors durch diesen Punkt heißt Normale, sie ist orthogonal zur Tangente.

Ist die Kurve als Graph einer differenzierbaren Funktion f gegeben, so hat die Tangente im Punkt p = (x0,f(x0)) die Steigung m_t = f'(x_0)\,, die Steigung der Normalen beträgt also

m_n = -\frac 1{m_t} = - \frac 1 {f'(x_0)} \,.

Die Normale im Punkt p = (x0,f(x0)) ist dann durch die Gleichung

y = f(x0) + mn(xx0),

also durch

y = f(x_0) - \frac 1{f'(x_0)} (x-x_0)

gegeben.

Ist die ebene Kurve in Parameterform gegeben, c(t) = (c1(t),c2(t)), so ist \dot c(t) = (\dot c_1(t), \dot c_2(t)) ein Tangentialvektor im Punkt c(t) und (\dot c_2(t), -\dot c_1(t)) ein nach rechts weisender Normalenvektor. Hier bezeichnet, wie in der Differentialgeometrie üblich, der Punkt die Ableitung nach dem Kurvenparameter.

Bei Raumkurven bilden die Normalenvektoren in einem Punkt (wie im Fall der Geraden im Raum) einen zweidimensionalen Untervektorraum. In der elementaren Differentialgeometrie wählt man einen Einheitsvektor aus, der in die Richtung zeigt, in die die Kurve gekrümmt ist. Diesen nennt man Hauptnormalen(einheits)vektor, siehe Frenetsche Formeln.

Flächen im dreidimensionalen Raum

Zur Veranschaulichung des Normalenvektors

Entsprechend ist der Normalenvektor einer gekrümmten Fläche (Topologie) in einem Punkt der Normalenvektor der Tangentialebene in diesem Punkt.

Ist die Fläche durch die Parameterdarstellung

F\colon U \subset \R^2 \to \R^3, \quad (u,v) \mapsto F(u,v)

gegeben, so spannen die beiden Vektoren

F_u(u,v) := \tfrac {\partial F} {\partial u}(u,v) und F_v := \tfrac {\partial F} {\partial v}(u,v)

die Tangentialebene im Punkt F(u,v) auf. (Hier wird vorausgesetzt, dass die Fläche bei (u,v) regulär ist, also dass Fu(u,v) und Fv(u,v) linear unabhängig sind.) Ein Normalenvektor im Punkt F(u,v) ist ein Vektor, der senkrecht auf Fu(u,v) und Fv(u,v) steht, z. B. der durch das Kreuzprodukt gegebene und dann normierte Hauptnormalenvektor

N(u,v) := \frac{F_u(u,v) \times F_v(u,v)}{\left|F_u(u,v) \times F_v(u,v)\right|}\,.

Hier bezeichnen die Betragsstriche die euklidische Norm des Vektors.

Ist die Fläche implizit durch eine Gleichung gegeben,

g(x,y,z) = 0,

wobei g \colon \R^3 \to \R eine differenzierbare Funktion ist, so ist der Gradient

\operatorname {grad} g(x,y,z) = \left(\tfrac{\partial g}{\partial x}(x,y,z), \tfrac{\partial g}{\partial y}(x,y,z), \tfrac{\partial g}{\partial z}(x,y,z)\right)

ein Normalenvektor der Fläche im Punkt (x,y,z) (vorausgesetzt, dass er dort nicht verschwindet).

Ist die Fläche als Graph einer differenzierbaren Funktion f \colon \R^2 \to \R gegeben, so ist

\big(-\tfrac{\partial f}{\partial x}(x,y), -\tfrac{\partial f}{\partial y}(x,y), 1\big)

ein nach oben weisender Normalenvektor im Punkt p = (x,y,f(x,y)). Dies erhält man, indem man verwendet, dass die Abbildung F(x,y) = (x,y,F(x,y)) eine Parametrisierung ist oder dass die Fläche durch die Gleichung

g(x,y,z): = zf(x,y) = 0

dargestellt wird.

Verallgemeinerungen

Der Begriff des Normalenvektors lässt sich verallgemeinern auf

  1. affine Unterräume (verallgemeinerte Ebenen) in euklidischen Räumen höherer Dimension (Mathematik) (insbesondere auf Hyperebenen),
  2. Flächen, Hyperflächen und Untermannigfaltigkeiten in euklidischen Räumen höherer Dimension,
  3. Flächen, Hyperflächen und Untermannigfaltigkeiten von Riemannschen Mannigfaltigkeiten,
  4. Nichtglatte Objekte, wie konvexe Körper und rektifizierbare Mengen.

Anwendungen

Im Bereich der Computergrafik werden Normalenvektoren unter Anderem genutzt, um festzustellen, ob eine Fläche dem Benutzer zugewandt ist oder nicht. Der Einsatz von Normalenvektoren erlaubt dadurch Back Face Culling. Des Weiteren werden sie zur Berechnung von Lichteinfall und Reflexionen benötigt.


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hauptkrümmung — ist ein Begriff aus der Differentialgeometrie. Jedem Punkt einer gegebenen Fläche im dreidimensionalen Raum ( ) werden zwei Hauptkrümmungen zugeordnet. Inhaltsverzeichnis 1 Definition 2 Beispiele 3 …   Deutsch Wikipedia

  • Lenz'sche Regel — Die Lenzsche Regel (auch Regel von Lenz) ist eine Aussage über die Richtung des elektrischen Stromes bei elektromagnetischer Induktion. Sie ist nach Heinrich Lenz benannt, der sie 1834 (drei Jahre nach Michael Faradays Veröffentlichung der… …   Deutsch Wikipedia

  • Lenzsche Regel — Das Prinzip der Lenz’schen Regel: Ändert sich die Flächendichte B des magnetischen Flusses durch ein Areal, wird es dadurch von einem elektrischen Wirbelfeld E umgeben, das, wenn möglich, einen der Flussänderung entgegenwirkenden Strom bewirkt.… …   Deutsch Wikipedia

  • Lenzsches Gesetz — Die Lenzsche Regel (auch Regel von Lenz) ist eine Aussage über die Richtung des elektrischen Stromes bei elektromagnetischer Induktion. Sie ist nach Heinrich Lenz benannt, der sie 1834 (drei Jahre nach Michael Faradays Veröffentlichung der… …   Deutsch Wikipedia

  • Regel von Lenz — Die Lenzsche Regel (auch Regel von Lenz) ist eine Aussage über die Richtung des elektrischen Stromes bei elektromagnetischer Induktion. Sie ist nach Heinrich Lenz benannt, der sie 1834 (drei Jahre nach Michael Faradays Veröffentlichung der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”