Magnet bubble memory

Magnet bubble memory

Magnetblasenspeicher ist eine Art von Computer-Datenspeicher, bei dem ein dünner Film eines magnetisierbaren Materials zum Einsatz kommt, in dem sich kleine magnetische Bereiche, die sogenannten Blasen (englisch: bubbles) befinden. Jede dieser Blasen speichert ein Bit Daten. Der Magnetblasenspeicher galt in den 1970er Jahren als vielversprechende Technologie, geriet aber in den 1980ern bald gegenüber den Festplatten kommerziell ins Hintertreffen.

Inhaltsverzeichnis

Vorgeschichte: Twistorspeicher

Der Magnetblasenspeicher ist im Wesentlichen das geistige Kind einer einzigen Person, Andrew Bobeck. Bobeck hatte in den 1960er Jahren an verschiedenen Projekten in Zusammenhang mit Magnetismus gearbeitet, derer zwei ihn für die Entwicklung des Magnetblasenspeichers prädestinierten. Dabei handelte es sich um das Magnetkernspeicher-System, welches über einen Transistor-basierten Controller gesteuert wurde, und den Twistor-Speicher.

Twistorspeicher basiert auf Magnetostriktion, einem Effekt, durch den Magnetisierungsmuster bewegt werden können. Wenn ein solches Muster beispielsweise auf Magnetband gespeichert ist, durch das anschließend elektrischer Strom geleitet wird, so bewegt sich das Muster als Ganzes in Stromflussrichtung. Durch Platzieren eines Detektors an einer Stelle über dem Band kann die gespeicherte Information sukzessive ausgelesen werden, ohne dass das Band sich physikalisch bewegt. Es handelt sich beim Twistorspeicher also um ein unbewegliches Analogon des Trommelspeichers. In den 1960er Jahren wurde der Twistorspeicher vom amerikanischen Konzern AT&T in einer Reihe von Geräten eingesetzt.

Im Jahre 1967 stieß Bobeck zu einem Entwicklungsteam der Bell Laboratories und begann mit Verbesserungsarbeiten am Twistorspeicher. Sein Ziel dabei war, mithilfe eines Materials, in dem sich Magnetisierungsmuster nur in eine Richtung bewegen können, eine 2D-Version des Twistorspeichers zu konstruieren. Die Muster sollten an einer Seite des Materials eingeschrieben und anschließend wie im Twistorspeicher elektrisch bewegt werden. Wegen der richtungsgebundenen Beweglichkeit wäre dabei die Bildung von Spuren (Tracks) zu erwarten.

Magnetblasen

Bobeck begann seine Materialsuche mit Orthoferrit. Dabei bemerkte er einen interessanten Effekt: Legt man ein externes Magnetfeld an ein Magnetisierungsmuster in diesem Medium an, so kontrahiert der Bereich zu einem kleinen Kreis, den Bobeck als Blase (englisch: bubble) bezeichnete. Diese Blasen waren viel kleiner als die Magnetisierungsdomänen normaler Speichermedien wie Magnetband, sodass viel höhere Speicherdichten möglich erschienen.

Nach längerer Experimentierzeit erwies sich Granat als mit den besten Eigenschaften ausgestattet. Die Blasen bildeten sich leicht und waren gut beweglich. Es blieb jedoch schwierig, sie zum Auslesen der Daten gezielt an die Stelle des Detektors zu bewegen. Anders als im eindimensionalen Twistorspeicher standen nunmehr zwei Dimensionen zur Verfügung, und die laterale Bewegung der Bläschen war das Problem. Die Lösung war das Aufbringen eines Musters kleiner magnetisierbarer Felder auf die Granatoberfläche. Bei Anlegen eines schwachen Magnetfeldes wurden sie magnetisch, und die Blasen bleiben an ihrem einen Ende kleben. Durch Feldumkehr werden die Blasen zum anderen Ende, durch erneute Umkehr zum nächsten Feld in Linie transportiert.

Eine Speichereinheit besteht aus aufgereihten kleinen Elektromagneten als Schreibköpfe an einem Ende der Speicherschicht und Detektoren am anderen Ende. Eingeschriebene Blasen wandern langsam von einem Ende zum anderen, wobei sich benachbarte Lagen aus Twistorelementen bilden. Wird die Ausgabe der Detektoren wieder an die Schreibköpfe zurückgeleitet, so resultiert ein Zyklus, in dem die Informationen beliebig lange gespeichert werden können.

Merkmale und Anwendungen

Der Magnetblasenspeicher ist ein nichtflüchtiger Speicher. Selbst wenn der Strom abgeschaltet wird, bleiben die Bläschen erhalten, so wie auch die Magnetisierungsmuster auf einer Festplatte. Ein weiterer Vorteil ist das Fehlen mechanisch beweglicher Teile. Durch die geringe Größe der Bläschen lässt sich eine hohe Informationsdichte erzielen. Ein Nachteil hingegen ist die geringe Auslesegeschwindigkeit (Zugriffszeit ca. 500 Mikrosekunden). Bevor die Blasen nicht bis zum Detektor gewandert sind, kann die Information nicht gelesen werden.

Bobecks Team war bald in der Lage, 4.096 Bits pro Quadratzentimeter zu speichern, was der Speicherdichte der zu dieser Zeit üblichen Kernspeicher entsprach. Dadurch wurde das Interesse der Industrie in bedeutendem Umfang geweckt. Der Magnetbläschenspeicher schien sich als Alternative zu core-, Magnetband- und Diskettenspeicher anzubieten. Bis auf den Markt für Hochgeschwindigkeitsspeicher versprach der Magnetblasenspeicher, alle anderen Speicherarten zu ersetzen.

Mitte der 1970er Jahre arbeitete praktisch jede größere Elektronikfirma am Magnetblasenspeicher. Gegen Ende des Jahrzehnts waren mehrere Versionen auf dem Markt, und Intel lancierte seine eigene 1 Megabit-Version, den 7110. Anfang der 1980er Jahre jedoch erwies sich Magnetblasenspeicher mit der Einführung der Festplatte mit höherer Informationsdichte und kürzerer Zugriffszeit als Sackgasse. Die Entwicklungsarbeiten wurden somit beinahe vollständig eingestellt. Lediglich Nischenprodukte, bei denen es auf Zuverlässigkeit unter hoher mechanischer Belastung (z.B. in Gegenwart starker Vibration) ankam, konnten sich noch halten.

Eine solche Anwendung war das Bubble System-Videospielsystem der Firma Konami, das 1984 eingeführt wurde. Es basierte auf austauschbaren Magnetblasenspeicherkassetten und einem Derivat der Z80-Konsole. Zu den erhältlichen Spielen zählten Gradius, Attack Rush/Hyper Crash/Hyper Crush und TwinBee. Das Magnetblasenspeichersystem benötigte eine etwa 20 Sekunden lange Aufwärmzeit, die auf dem Bildschirm vor dem Laden des Spiels heruntergezählt wurde, da der Speicher erst bei 30 bis 40 °C optimal betrieben werden kann. Das Magnetblasenspeichersystem erwies sich als wenig populär, und viele dafür produzierte Spiele wurden in der Folge für andere Videokonsolen mit konventionellem ROM-Speicher produziert.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • magnetic bubble memory — noun a nonvolatile storage device that holds information in the form of bubbles on a thin film of magnetic silicate; no longer used in most computers • Hypernyms: ↑non volatile storage, ↑nonvolatile storage * * * magnetic bubble memory or… …   Useful english dictionary

  • Magnetoresistive random access memory — Computer memory types Volatile RAM DRAM (e.g., DDR SDRAM) SRAM In development T RAM Z RAM TTRAM Historical Delay line memory Selectron tube Williams tube Non volatile …   Wikipedia

  • magnetic bubble store — magnetic bubble memory or magnetic bubble store noun (computing) Same as ↑bubble memory (see under ↑bubble) • • • Main Entry: ↑magnet …   Useful english dictionary

  • Magnetic core memory — Magnetic core memory, or ferrite core memory, is an early form of random access computer memory. It uses small magnetic ceramic rings, the cores , through which wires are threaded to store information via the polarity of the magnetic field they… …   Wikipedia

  • Twistor memory — Twistor is a form of computer memory, similar to core memory, formed by wrapping or closing magnetic tape around a current carrying wire. Although the developers, Bell Labs, had high hopes for Twistor, it was used for only a brief time in the… …   Wikipedia

  • MBM — may be:In computing: * MBM (file format), mobile bitmap or multi bitmap * magnet bubble memory, a type of computer memory * Motherboard Monitor, a computer maintenance utilityIn music: * Meat Beat Manifesto, British electronic music group *… …   Wikipedia

  • MBM — ist die Abkürzung für: MBM Arquitectes, ein spanisches Architekturbüro magnet bubble memory (Magnetblasenspeicher) Meat Beat Manifesto, eine britische Musikgruppe Monteverdi Binningen Motors, zeitweilig auch Monteverdi Binningen Mantzel genannt,… …   Deutsch Wikipedia

  • Paul Charles Michaelis — was a Bell Labs researcher in magnetic bubble memory. Contents 1 Education 2 Career 3 Notable Awards 4 References …   Wikipedia

  • magnetic ceramics — Introduction       oxide materials that exhibit a certain type of permanent magnetization called ferrimagnetism. Commercially prepared magnetic ceramics are used in a variety of permanent magnet, transformer, telecommunications, and information… …   Universalium

  • Fusion power — The Sun is a natural fusion reactor. Fusion power is the power generated by nuclear fusion processes. In fusion reactions two light atomic nuclei fuse together to form a heavier nucleus (in contrast with fission power). In doing so they release a …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”