Satz von Banach-Tarski

Satz von Banach-Tarski
Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen.

Das Banach-Tarski-Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die demonstriert, dass sich der anschauliche Volumenbegriff nicht auf beliebige Punktmengen verallgemeinern lässt. Danach kann man eine Kugel derart zerlegen, dass sich ihre Teile wieder zu zwei lückenlosen Kugeln zusammenfügen lassen, von denen jede denselben Durchmesser hat wie die ursprüngliche. Das Volumen verdoppelt sich, ohne dass anschaulich ersichtlich ist, wie durch diesen Vorgang Volumen aus dem Nichts entstehen können sollte. Dieses Paradoxon demonstriert, dass das mathematische Modell des Raumes als Punktmenge in der Mathematik Aspekte hat, die sich in der physischen Realität nicht wiederfinden.

Im mathematischen Formalismus wird das Paradoxon damit erklärt, dass die Kugelteile dermaßen kompliziert geformt sind, dass ihr Volumen nicht mehr definierbar ist. Man bezeichnet solche Punktmengen als nicht messbar. Sie sind in einem gewissen Sinne unendlich filigran und porös bzw. staubwolkenartig. Die mathematische Existenz solcher Mengen ist nicht selbstverständlich: Zum Beweis der Existenz von nicht messbaren Teilmengen im d-dimensionalen, reellen Raum \R^d benötigt man das Auswahlaxiom, das zwar von einer überwiegenden Mehrheit der Mathematiker, jedoch nicht von allen, akzeptiert wird. Messbare Punktmengen hingegen verhalten sich hinsichtlich ihres Volumens additiv.

Die polnischen Mathematiker Stefan Banach und Alfred Tarski führten den Beweis 1924 und zeigten, dass im Fall der Kugel eine Zerlegung in sechs Teile ausreichend ist. Für diesen Satz kann es jedoch lediglich einen Existenzbeweis geben, ein konstruktiver Beweis ist nicht möglich.

In einer allgemeineren Formulierung dieses Satzes können sich Ausgangs- und Endkörper durch einen beliebigen Volumenfaktor unterscheiden und bis auf gewisse Einschränkungen auch beliebige, verschiedene Gestalt besitzen. Die allgemeine Formulierung dieses mathematischen Satzes in Räumen mit drei und mehr Dimensionen lautet:

Sei d \ge 3 eine ganze Zahl und seien X,Y\subset\R^d beschränkte Mengen mit nicht-leerem Inneren. Dann gibt es eine natürliche Zahl n und eine disjunkte Zerlegung X_1, \dots, X_n von X und zugehörige Bewegungen \beta_1, \dots, \beta_n derart, dass Y die disjunkte Vereinigung der Mengen \beta_1(X_1), \dots, \beta_n(X_n) ist.

In der Ebene ist dieser Satz nicht gültig. 1990 konnte Miklós Laczkovich jedoch zeigen, dass dieser Satz für Flächen zumindest in ähnlicher Form gilt. Danach sind zwei Flächen, sofern ihr Rand hinreichend glatt ist, ebenfalls zerlegungsgleich, allerdings nur dann, wenn ihre Flächen gleich groß sind. In diesem Sinne ist beispielsweise eine Quadratur des Kreises möglich, wenn auch nicht mit Zirkel und Lineal. Die Anzahl der erforderlichen Teile wurde jedoch von Laczkovich auf etwa 1050 geschätzt.

Weblinks

  • Reinhard Winkler: Wie macht man 2 aus 1? – Herleitung mit den Mitteln der Schulmathematik, in html- und pdf-Version.
  • Eine Kugel ist eine Kugel ist... sind zwei Kugeln?! – Das Paradoxon von Banach-Tarski auf dem Matheplaneten u. A. mit einer Konstruktion der benötigten Zerlegung der Kugel.

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Satz von Banach und Tarski — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Banach-Tarski — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Banach-Tarski-Paradoxon — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Banach-Tarski Paradox — Eine Kugel kann in endlich viele Teile zerlegt werden, aus denen sich zwei Kugeln jeweils von der Größe des Originals zusammensetzen lassen. Das Banach Tarski Paradoxon oder auch Satz von Banach und Tarski ist eine Aussage der Mathematik, die… …   Deutsch Wikipedia

  • Satz von Vitali (Maßtheorie) — Der Satz von Vitali (nach Giuseppe Vitali) besagt die Existenz einer nicht Lebesgue messbaren Menge. Man bezeichnet jede der durch den (nichtkonstruktiven) Beweis des Satzes von Vitali entstandenen Mengen auch als Vitali Menge. Deren Existenz… …   Deutsch Wikipedia

  • Banach — ist der Nachname mehrerer Personen: Ed Banach (* 1960), US amerikanischer Ringer Lou Banach (* 1960), US amerikanischer Ringer Maurice Banach (1967–1991), deutscher Fußballspieler Stefan Banach (1892–1945), polnischer Mathematiker, danach benannt …   Deutsch Wikipedia

  • Stefan Banach — ( ˈstɛfan ˈbanax?/i; * 30. März 1892 in Krakau; † 31. August 1945 in Lemberg) war ein polnischer Mathematiker. Er gilt als Begründer der modern …   Deutsch Wikipedia

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • Integrable Funktion — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

  • Integrierbare Funktion — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”