- T1-Raum
-
In der Topologie und verwandten Gebieten der Mathematik sind T1-Räume spezielle topologische Räume, die gewisse angenehme Eigenschaften besitzen. Das T1-Axiom ist ein Beispiel eines Trennungsaxioms.
Inhaltsverzeichnis
Definition
Sei X ein topologischer Raum und x und y zwei Punkte in X. Man sagt, dass x und y getrennt sind oder getrennt werden können, falls x und y je in einer offenen Menge liegen, die den anderen Punkt nicht enthält.
X heißt T1-Raum, falls zwei beliebige Punkte getrennt sind. Man sagt auch, dass ein T1-Raum eine Fréchet-Topologie besitzt. Zu vermeiden ist in diesem Zusammenhang die Bezeichnung Fréchet-Raum, die ein Begriff aus der Funktionalanalysis ist.
Eigenschaften
Sei X ein topologischer Raum. Folgende Aussagen sind äquivalent:
- X ist ein T1-Raum.
- X ist ein Kolmogoroff-Raum und ein R0-Raum.
- Alle einpunktigen Mengen in X sind abgeschlossen.
- Jede endliche Menge ist abgeschlossen.
- Jede Menge mit endlichem Komplement ist offen.
- Jeder Elementarfilter zu x konvergiert nur gegen x.
- Für jede Teilmenge S von X gilt, dass ein Element x aus X genau dann ein Häufungspunkt von S ist, wenn jede offene Umgebung von x unendlich viele Elemente enthält.
In topologischen Räumen gelten immer folgende Implikationen
- getrennt ⇒ topologisch unterscheidbar ⇒ disjunkt
Falls der erste Pfeil umgekehrt werden kann, handelt es sich um einen R0-Raum, genau in einem T0-Raum gilt dies auch für die zweite Implikation. Damit sieht man, dass ein topologischer Raum genau dann T1 erfüllt, wenn er sowohl ein R0-Raum und ein T0-Raum ist.
Beispiele
Die Zariski-Topologie auf einer algebraischen Varietät (im klassischen Sinne) ist T1. Um das zu sehen betrachten wir einen Punkt mit lokaler Koordinate . Die dazugehörige einpunktige Menge ist die Nullstellenmenge der Polynome . Der Punkt ist somit abgeschlossen.
Für ein weiteres Beispiel betrachten wir die Menge der ganzen Zahlen . Als offene Menge definieren wir genau die leere Menge und die Mengen mit endlichem Komplement. Sie haben also alle die Gestalt mit einer endlichen Menge A. Seien nun x und y zwei verschiedene Punkte. Die Menge Ox ist eine offene Menge, die y enthält und x nicht. Andererseits enthält Ox das Element x aber y nicht. Somit handelt es sich tatsächlich um einen T1-Raum. Dies kann man aber auch aus der Tatsache folgern, dass einelementige Mengen abgeschlossen sind. Dieser Raum ist aber kein T2-Raum. Denn für zwei endliche Mengen A und B gilt , was nie leer sein kann. Weiter ist die Menge der geraden Zahlen kompakt, aber nicht abgeschlossen, was in einem T2-Raum nie der Fall sein kann.
Literatur
- Boto von Querenburg: Mengentheoretische Topologie. 3. neu bearbeitete und erweiterte Auflage. Springer-Verlag, Berlin u. a. 2001, ISBN 3-540-67790-9 (Springer-Lehrbuch).
Kategorien:- Mengentheoretische Topologie
- Mathematischer Raum
Wikimedia Foundation.