Cauchy-Eigenschaft

Cauchy-Eigenschaft

Das Cauchykriterium für unendliche Reihen (nach Augustin Louis Cauchy) ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung ob eine unendliche Reihe konvergent oder divergent ist.

Sei eine unendliche Reihe

S = \sum_{n=0}^\infty a_n

mit reellen oder komplexen Summanden an gegeben.

Wenn zu jedem \varepsilon > 0 ein Index N existiert, so dass für alle m und n mit m > n > N gilt:

\left| \sum_{k=n}^m a_k \right| < \varepsilon

dann konvergiert die Reihe in \mathbb{R} (bzw. \mathbb{C}). Ist das Kriterium nicht erfüllt, divergiert sie.

Dieses Kriterium sagt zunächst nur aus, dass die Partialsummenfolge von S eine Cauchy-Folge ist. Aufgrund der Vollständigkeit von \mathbb{R} und \mathbb{C} folgt dann die Konvergenz der Reihe.


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Cauchy-Folge — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • Cauchy — ist der Name folgender Personen: Augustin Louis Cauchy (1789–1857), französischer Mathematiker Cauchy ist der Name folgender Ortschaften in Frankreich: Cauchy à la Tour, Gemeinde im Département Pas de Calais Cauchy, ehemaliger Name der Gemeinde… …   Deutsch Wikipedia

  • Cauchy-Filter — Uniforme Räume im Teilgebiet Topologie der Mathematik sind Verallgemeinerungen von metrischen Räumen. Jeder metrische Raum kann auf natürliche Weise als uniformer Raum betrachtet werden, und jeder uniforme Raum kann auf natürliche Weise als… …   Deutsch Wikipedia

  • Cauchyfolge — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • Fundamentale Folge — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • In sich konvergent — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • In sich konvergente Folge — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • Konzentrierte Folge — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”