Difference of Gaussian

Difference of Gaussian
Helligkeitsänderung einer Kante
Verlauf der 2. Ableitung an der Kante

Der Marr-Hildreth-Operator oder Laplacian of Gaussian (LoG) ist eine spezielle Form eines diskreten Laplace-Filters und kommt zum Beispiel in der Bildverarbeitung bei der Detektion von Kanten zum Einsatz. Der Filterkernel wird durch die Anwendung des Laplace-Operators auf eine Gauß-Funktion erstellt. Da seine Form der eines mexikanischen Sombreros ähnelt, ist er auch als Mexican Hat oder Sombrerofilter bekannt. Der LoG ist ein isotropes Maß der zweiten Ableitung an ein Bild. Deswegen detektiert er Orte großer Veränderung. In einem Bild sind das gerade Kanten von Objekten, an denen sich die Intensität schnell ändert. Es handelt sich also um einen Filter, der zur Kantendetektion genutzt werden kann.

Die Bezeichnung Marr-Hildreth-Operator geht zurück auf David Marr und Ellen Catherine Hildreth.[1]

Inhaltsverzeichnis

Erzeugung des Kernels

Ausgangspunkt für die Erzeugung des Filterkernels ist die Gauß-Funktion in 2D:


 f(x, y) = \frac{1}{2 \pi \sigma^2}e^{-\frac{x^2 + y^2}{2 \sigma^2}} .


Wendet man den Laplace-Operator auf die Gauß-Funktion an, erhält man die kontinuierliche Repräsentation des LoG[2]:


 g(x, y) = \Delta \; f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2} .


 g(x, y) = -\frac{1}{\pi \sigma^4} e^{-\frac{x^2 + y^2}{2 \sigma^2}} \left(1-\frac{x^2 + y^2}{2 \sigma^2}\right) .


Um diese Funktion in der Bildverarbeitung zu nutzen, wird der kontinuierliche LoG diskret approximiert. Die Approximation sollte für Kernel ungerader Kantenlänge k = 3, 5, 7, \dots durchgeführt werden, wobei der Ursprung des Kernels jeweils in der Mitte liegt – also bei (x, y) = (2, 2), (3, 3), (4, 4), \dots. Ein (x,y) = (7,7) Pixel großer Beispielkernel, also eine diskrete Approximation des kontinuierlichen LoG mit einer Standardabweichung von σ = 1,6, könnte so aussehen:



g(x, y) = \begin{pmatrix}
             1 &   3 &   4 &   4 &   4 &   3 &   1 \\
             3 &   4 &   3 &   0 &   3 &   4 &   3 \\
             4 &   3 &  -9 & -17 &  -9 &   3 &   4 \\
             4 &   0 & -17 & -30 & -17 &   0 &   4 \\
             4 &   3 &  -9 & -17 &  -9 &   3 &   4 \\
             3 &   4 &   3 &   0 &   3 &   4 &   3 \\
             1 &   3 &   4 &   4 &   4 &   3 &   1 \\
          \end{pmatrix}


Der Kernel wurde zunächst auf 1 normiert und dann mit 255 (höchster Farbwert eines 8-Bit-Grauwertbildes) multipliziert. Die Form des LoG ist in den Matrixeinträgen deutlich erkennbar. Jetzt kann er mittels Faltung auf ein Bild angewendet werden, um die Kanten zu verdeutlichen:


I^* = g \ast I

Hierbei bezeichnet \ast die Faltungsoperation, I das Eingangsbild und I * das Bild mit den verdeutlichten Kanten. Der LoG findet im Grunde genommen keine Kanten, sondern Gebiete mit rapiden Änderungen (siehe hierzu die erste Graphik im Artikel über den Laplace-Filter). Aufgrund der zweiten Ableitung erhält man auf einer Seite der eigentlichen Kante einen negativen und auf der anderen Seite einen positiven Wert. Die Kante liegt am Nulldurchgang zwischen diesen Werten.

Alternative Anwendungen

An Stelle einer einzigen Faltungsoperation mit einem LoG-Faltungskern kann man auch zuerst den Laplacefilter auf das Eingangsbild anwenden und das Resultat anschließend mit der Gauß-Funktion falten (also weichzeichnen), oder umgekehrt. In diesem Falle muss dafür Sorge getragen werden, dass das Zwischenergebnis korrekt abgespeichert wird (32 bit floating point), damit es nicht zu unerwünschten Overflow oder Rundungsproblemen kommt.

Als Nachteil des LoG gilt, dass die Faltungsmasken für hohe Werte von σ sehr groß werden (40 Pixel bei σ = 4). Man kann eine Approximation des LoG-Filters durch eine Differenz von 2 Gaußkernen mit verschiedenen Varianzen erhalten. Diese Methode wird Difference of Gaussian genannt.


Bildwerk

Literatur

  • B. Jähne: Digitale Bildverarbeitung. Springer, 2002
  • R. Haralick und L. Shapiro: Computer and Robot Vision. Band 1. Addison-Wesley Publishing Company, 1992
  • D. Marr: Vision. Freeman, 1982

Weblink

Referenzen

  1. David Marr, Ellen Catherine Hildreth: Theory of Edge Detection. In Proceedings of the Royal Society of London. B 207, 1980, S. 187-217.
  2. http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Difference of Gaussians — In computer vision, Difference of Gaussians is a grayscale image enhancement algorithm that involves the subtraction of one blurred version of an original grayscale image from another, less blurred version of the original. The blurred images are… …   Wikipedia

  • Gaussian curvature — In differential geometry, the Gaussian curvature or Gauss curvature of a point on a surface is the product of the principal curvatures, κ 1 and κ 2, of the given point. It is an intrinsic measure of curvature, i.e., its value depends only on how… …   Wikipedia

  • Gaussian quadrature — In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration.(See numerical integration for more on… …   Wikipedia

  • Gaussian network model — The Gaussian network model (GNM), one of many things named after Carl Gauss, is a representation of a biological macromolecule as an elastic mass and spring network to study, understand, and characterize mechanical aspects of its long scale… …   Wikipedia

  • Gaussian filter — In electronics and signal processing, a Gaussian filter is a filter whose filter window is the Gaussian function:x mapsto sqrt{frac{a}{picdot e^{ a cdot x^2}or with the standard deviation as parameter:x mapsto frac{1}{sqrt{2cdotpi}cdotsigma}cdot… …   Wikipedia

  • Difference engine — For the novel by William Gibson and Bruce Sterling, see The Difference Engine. The London Science Museum s difference engine, built from Babbage s design. The design has the same precision on all columns, but when calculating converging… …   Wikipedia

  • Laplace of Gaussian — Helligkeitsänderung einer Kante Verlauf der 2. Ableitung an der Kante Der Marr Hildreth Operator oder Laplacian of Gaussian (LoG) ist eine spezielle Form eines diskreten Laplace Filters …   Deutsch Wikipedia

  • Laplacian of Gaussian — Helligkeitsänderung einer Kante Verlauf der 2. Ableitung an der Kante Der Marr Hildreth Operator oder Laplacian of Gaussian (LoG) ist eine spezielle Form eines diskreten Laplace Filters …   Deutsch Wikipedia

  • Linear-quadratic-Gaussian control — In control theory, the linear quadratic Gaussian (LQG) control problem is one of the most fundamental optimal control problems. It concerns uncertain linear systems disturbed by additive white Gaussian noise, having incomplete state information… …   Wikipedia

  • Matrix difference equation — A matrix difference equation[1][2] is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. Occasionally …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”