Feigenbaumkonstante

Feigenbaumkonstante

Die beiden Feigenbaum-Konstanten δ und α sind mathematische Konstanten, die in der Chaosforschung eine wichtige Rolle spielen. Der Zahlenwert von δ wurde erstmals 1977 von den Physikern Siegfried Großmann und Stefan Thomae publiziert. Mitchell Feigenbaum, der diese Zahl bereits 1975 beim Studium der Fixpunkte von iterierten Funktionen entdeckt hatte, publizierte 1978 eine Arbeit über die Universalität dieser Konstante. Die Größe der Bedeutung dieser Konstanten für die Chaosforschung wird oft mit der von π für die Geometrie verglichen. Ihre Zahlenwerte lauten

\delta = 4{,}66920160910299067185320382\cdots
\alpha = 2{,}502907875095892822283902873218\cdots.
Ausschnitt des Feigenbaum-Diagramms der logistischen Gleichung aus dem Bereich der Bifurkationen am Übergang von Ordnung (links) zum Chaos (rechts).

Diese Zahlen treten in Zusammenhang mit nichtlinearen Systemen in Erscheinung, die in Abhängigkeit von einem Parameter reguläres oder chaotisches Verhalten zeigen. Der Übergang ins Chaos ist dabei von einem Parameterbereich mit oszillierendem Verhalten gekennzeichnet. Zum chaotischen Bereich hin nimmt dabei die Oszillationsperiode stufenweise um den Faktor zwei zu, ein Phänomen, das als Periodenverdopplung bezeichnet wird. Die zugehörigen Parameterintervalle werden mit zunehmender Periode immer kürzer. Das Verhältnis der Längen aufeinander folgender Parameterintervalle unterschiedlicher Periode strebt dabei gegen die Feigenbaum-Konstante δ.

Für den Fall von nichtlinearen Systemen, die durch Zahlenfolgen mit nichtlinearem rekursiven Bildungsgesetz repräsentiert werden, und die in Abhängigkeit von einem Parameter ein solches Verhalten zeigen, lässt sich dieses Phänomen im so genannten Feigenbaum-Diagramm darstellen. Es stellt Folgenglieder in Abhängigkeit von diesem Parameter dar und zwar ab einem Folgenindex, nach dem die Folge sich auf ein bestimmtes Verhalten eingependelt hat, wie beispielsweise Konvergenz gegen einen periodischen Grenzzyklus oder chaotisches Verhalten, und entspricht damit einer Darstellung der Häufungspunkte der Folge. Stellen, an denen eine Periodenverdopplung stattfindet, sind durch gabelförmige Strukturen gekennzeichnet, die als Bifurkationen bezeichnet werden. Das Verhältnis der Breiten aufeinander folgender Gabeln am nächsten Bifurkationspunkt strebt dabei gegen die Feigenbaum-Konstante α. Sie wird oft auch als zweite Feigenbaum-Konstante bezeichnet.

Im Bereich des chaotischen Verhaltens treten Inseln von periodischen Verhalten auf. Der Übergang des Verhaltens in diesen Inseln zum Hauptbereich nichtchaotischen Verhaltens hin ist instantan, in die andere Richtung ist er wiederum von Periodenverdopplungen gekennzeichnet, die quantitativ das gleiche Verhalten zeigen.

Dieses qualitative Verhalten und die zugehörigen Zahlenverhältnis hängen nicht von den Details des mathematischen oder physikalischen nichtlinearen Systems ab, sondern stellen ein universelles und damit fundamentales Gesetz derartiger Systeme dar. Das einfachste mathematische Beispiel ist das Verhalten von Zahlenfolgen mit quadratischem rekursiven Bildungsgesetz, wie die logistische Gleichung und die Zahlenfolge, die der Mandelbrot-Menge zugrunde liegt.

Es wird vermutet, dass δ und α transzendent sind, ein entsprechender Beweis steht jedoch noch aus.

Siehe auch

Literatur

  • Heinz-Otto Peitgen und Peter H. Richter: The Beauty of Fractals. ISBN 0-387-15851-0
  • S. Grossmann; S. Thomae: Invariant distributions and stationary correlation functions of one-dimensional discrete processes. In: Z. Naturforsch. 32a, 1353–1363 (1977).

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Liste mathematischer Konstanten — Eine mathematische Konstante ist eine fest definierte spezielle reelle oder komplexe Zahl, die sich auf natürliche Weise in der Mathematik ergibt. Anders als physikalische Konstanten werden mathematische Konstanten unabhängig von jedem… …   Deutsch Wikipedia

  • Mathematische Konstanten — Eine mathematische Konstante ist eine fest definierte spezielle reelle oder komplexe Zahl, die sich auf natürliche Weise in der Mathematik ergibt. Anders als physikalische Konstanten werden mathematische Konstanten unabhängig von jedem… …   Deutsch Wikipedia

  • Feigenbaum-Diagramm — Die logistische Gleichung wurde ursprünglich 1837 von Pierre François Verhulst als demografisches Modell eingeführt. Die Gleichung ist ein Beispiel dafür, wie komplexes, chaotisches Verhalten aus einfachen nichtlinearen Gleichungen entstehen kann …   Deutsch Wikipedia

  • Feigenbaumdiagramm — Die logistische Gleichung wurde ursprünglich 1837 von Pierre François Verhulst als demografisches Modell eingeführt. Die Gleichung ist ein Beispiel dafür, wie komplexes, chaotisches Verhalten aus einfachen nichtlinearen Gleichungen entstehen kann …   Deutsch Wikipedia

  • Logistische Abbildung — Die logistische Gleichung wurde ursprünglich 1837 von Pierre François Verhulst als demografisches Modell eingeführt. Die Gleichung ist ein Beispiel dafür, wie komplexes, chaotisches Verhalten aus einfachen nichtlinearen Gleichungen entstehen kann …   Deutsch Wikipedia

  • Logistische Gleichung — Die logistische Gleichung wurde ursprünglich 1837 von Pierre François Verhulst als demografisches mathematisches Modell eingeführt. Die Gleichung ist ein Beispiel dafür, wie komplexes, chaotisches Verhalten aus einfachen nichtlinearen Gleichungen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”