Fermatsches Theorem

Fermatsches Theorem

Das Fermatsche Theorem ist ein Lehrsatz in der Zahlentheorie. Man unterscheidet:


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hamilton'sches Prinzip — Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen… …   Deutsch Wikipedia

  • Hamilton-Prinzip — Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen… …   Deutsch Wikipedia

  • Hamiltonsches Extremalprinzip — Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen… …   Deutsch Wikipedia

  • Prinzip der kleinsten Wirkung — Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen… …   Deutsch Wikipedia

  • Prinzip der stationären Wirkung — Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen… …   Deutsch Wikipedia

  • Wirkungsfunktional — Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”