Wirkungsfunktional

Wirkungsfunktional

Das Hamiltonsche Prinzip oder das Prinzip der kleinsten Wirkung ist ein Extremalprinzip. Danach verhalten sich die physikalischen Teilchen und Felder so, dass eine Größe, die die Teilchenbahnen und Felder bewertet, kleiner ist als bei allen anderen denkbaren Teilchenbahnen oder Feldwerten. Die Bewertung nennen Physiker die Wirkung, mathematisch ist die Wirkung ein Funktional. Genauer gesehen erweist sich in vielen Fällen die Wirkung nicht als minimal, sondern nur als stationär. Dann ist das Hamiltonsche Prinzip ein Prinzip der stationären Wirkung.

Ein Beispiel ist das Fermatsche Prinzip, nach dem ein Lichtstrahl in einem Medium von allen denkbaren Wegen vom Anfangspunkt zum Endpunkt den Weg mit der geringsten Laufzeit durchläuft.

Aus dem Hamiltonschen Prinzip folgen bei geeignet gewählter Wirkung die Newtonschen Bewegungsgleichungen, aber auch die Gleichungen der relativistischen Mechanik, die Maxwellgleichungen der Elektrodynamik, die Einstein-Gleichungen der Allgemeinen Relativitätstheorie und die Gleichungen, mit denen man die anderen elementaren Wechselwirkungen beschreibt.

Inhaltsverzeichnis

Geschichte

Pierre Maupertuis sprach 1746 als erster von einem allgemeingültigen Prinzip der Natur, extremal oder optimal abzulaufen (vgl. auch Ockhams Rasiermesser). Leonhard Euler und Joseph Lagrange klärten in der Mitte des achtzehnten Jahrhunderts, dass solch ein Prinzip die Gültigkeit von Euler-Lagrange-Gleichungen bedeute. Die lagrangesche Formulierung der Mechanik stammt von 1788. 1834 formulierte William Hamilton das nach ihm benannte Prinzip.

Mathematische Beschreibung

In der Mechanik ist die Wirkung das zeitliche Integral über eine Funktion der Zeit t, des Ortes \mathbf x und der Geschwindigkeit \mathbf v, die sogenannte Lagrangefunktion

L(t,\mathbf x,\mathbf v)\,.

Beispielsweise ist in Newtonscher Mechanik die Lagrangefunktion eines Teilchens der Masse \,m, das sich im Potential \,V(t,\mathbf x) bewegt, die Differenz von kinetischer und potentieller Energie:


\,L(t,\mathbf x,\mathbf v)= 
\frac{1}{2}\,m\,\mathbf v^2 - V(t,\mathbf x)\,,

In der relativistischen Mechanik ist die Lagrangefunktion eines freien Teilchens

\,L(t,\mathbf x,\mathbf v)=-m\,c^2\sqrt{1-\mathbf v^2/c^2}\,.

Jeder Bahn \Gamma:t\mapsto \mathbf x(t)\,, die im Laufe der Zeit t von einem Anfangspunkt \underline{\mathbf x}=\mathbf x(t_1) zu einem Endpunkt \overline{\mathbf x}=\mathbf x(t_2) durchlaufen wird, ordnet die Wirkung folgenden Wert zu:


W[\Gamma] = 
\int_{t_1}^{t_2}  \mathrm d t\,
\,L\bigl(t,\mathbf x(t),\mathbf \dot{x}(t)\bigr)\,.

Die Wirkung \,W hat also die Dimension Energie mal Zeit.

Das Hamiltonsche Prinzip besagt nun, dass von allen denkbaren Bahnen, die anfänglich durch \underline{\mathbf x} und schließlich durch \overline{\mathbf x} laufen, diejenigen Bahnen in der Natur durchlaufen werden, die die kleinste, genauer eine stationäre Wirkung haben. Für die physikalisch durchlaufenen Bahnen verschwindet die erste Variation der Wirkung:

\, \delta W = 0

Sie genügen daher der Euler-Lagrange-Gleichung

\frac{\partial L}{\partial x} -
\frac{\mathrm d}{\mathrm d t}
\frac{\partial L}{\partial v}= 0\,.

Beispielsweise ergeben sich für die nichtrelativistische Bewegung eines Teilchens im Potential die Newtonschen Bewegungsgleichungen

-\operatorname{grad}V - m \,\ddot{x} = 0\,.

Bei einem freien, relativistischen Teilchen ist der Impuls dagegen zeitunabhängig:

\frac{\mathrm d}{\mathrm d t}\frac{m \mathbf v}{\sqrt{1-\mathbf v^2/c^2}} = 0\,

Das Hamiltonsche Prinzip für Felder

In der Feldtheorie wird hingegen das Verhalten von Feldern untersucht, d.h. auf welche Weise sie sich verändern und mit ihrer Umgebung wechselwirken.

Setzt man in das Hamiltonsche Prinzip

\delta \int_{t_1}^{t_2} dt \, L = 0

die Lagrange-Dichte über

L = \int d^3 r \mathcal{L} \left(\phi, \frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}, t \right) , mit einem Feld φ = φ(x,y,z,t)

ein, so erhält man das Hamiltonsche Prinzip für Felder, mit

\delta \int_{t_1}^{t_2} dt \int d^3 r \mathcal{L} = 0.

Man erkennt, dass diese Formulierung insbesondere für die Relativitätstheorie interessant ist, da hier über den Ort und die Zeit integriert wird. Analog zum gewöhnlichen Hamiltonschen Prinzip lassen sich aus dieser abgewandelten Version die Lagrangegleichungen für Felder bestimmen.

Eigenschaften

Da das Wirkungsprinzip unabhängig vom verwendeten Koordinatensystem ist, kann man die Euler-Lagrangegleichungen in solchen Koordinaten untersuchen, die dem jeweiligen Problem angemessen sind und beispielsweise Kugelkoordinaten verwenden, wenn es um die Bewegung im drehinvarianten Gravitationsfeld der Sonne geht. Dies vereinfacht die Lösung der Gleichung.

Zudem lassen sich bequem Zwangsbedingungen berücksichtigen, wenn mechanische Vorrichtungen die freie Bewegung der Massepunkte einschränken wie beispielsweise die Aufhängung bei einem Kugelpendel.

Vor allem aber lässt sich in dieser Formulierung der Bewegungsgleichungen das Noether-Theorem beweisen, das besagt, dass zu jeder Symmetrie der Wirkung eine Erhaltungsgröße gehört und dass umgekehrt zu jeder Erhaltungsgröße eine Symmetrie der Wirkung gehört.

Die Erhaltungsgrößen wiederum sind ausschlaggebend dafür, ob sich die Bewegungsgleichungen durch Integrale über gegebene Funktionen lösen lassen.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Noether-Theorem — Das Noether Theorem (formuliert 1918 von Emmy Noether) verknüpft elementare physikalische Begriffe wie Ladung, Energie und Impuls mit geometrischen Eigenschaften, der Invarianz der Wirkung unter Symmetrietransformationen: Zu jeder… …   Deutsch Wikipedia

  • Noether Theorem — Das Noether Theorem verknüpft elementare physikalische Begriffe wie Ladung, Energie und Impuls mit geometrischen Eigenschaften, der Invarianz der Wirkung unter Symmetrietransformationen. Es wurde 1918 von Emmy Noether formuliert: Zu jeder… …   Deutsch Wikipedia

  • Noethersches Theorem — Das Noether Theorem verknüpft elementare physikalische Begriffe wie Ladung, Energie und Impuls mit geometrischen Eigenschaften, der Invarianz der Wirkung unter Symmetrietransformationen. Es wurde 1918 von Emmy Noether formuliert: Zu jeder… …   Deutsch Wikipedia

  • Noethertheorem — Das Noether Theorem verknüpft elementare physikalische Begriffe wie Ladung, Energie und Impuls mit geometrischen Eigenschaften, der Invarianz der Wirkung unter Symmetrietransformationen. Es wurde 1918 von Emmy Noether formuliert: Zu jeder… …   Deutsch Wikipedia

  • Allgemeine Relativitätstheorie — Die allgemeine Relativitätstheorie (kurz: ART) beschreibt die Wechselwirkung zwischen Materie (einschließlich Feldern) einerseits und Raum und Zeit andererseits. Sie deutet Gravitation als geometrische Eigenschaft der gekrümmten vierdimensionalen …   Deutsch Wikipedia

  • Anomalie (Quantenfeldtheorie) — Unter einer Anomalie in der Quantenfeldtheorie versteht man die Brechung einer klassischen Symmetrie einer Feldtheorie (auf klassischem Niveau) durch den Prozess der Quantisierung. Technisch gesehen ergeben sich solche anomalen Symmetrien, indem… …   Deutsch Wikipedia

  • Einsteintensor — Die allgemeine Relativitätstheorie (kurz: ART) beschreibt die Wechselwirkung zwischen Materie (einschließlich Feldern) einerseits und Raum und Zeit andererseits. Sie deutet Gravitation als geometrische Eigenschaft der gekrümmten vierdimensionalen …   Deutsch Wikipedia

  • Floer-Homologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • Floerhomologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • QCD — Die Quantenchromodynamik (QCD) ist die quantenfeldtheoretische Beschreibung der starken Wechselwirkung. Inhaltsverzeichnis 1 Einleitung 2 Nichtabelsche Eichgruppe 3 Erläuterungen und Abgrenzung zur Kernphysik 4 Lagrangedichte der QCD …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”