- Induktion (Mathematik)
-
Vollständige Induktion oder der „Schluss von n auf n + 1“ ist eine mathematische Beweismethode, die üblicherweise eine Aussage für alle natürlichen Zahlen beweist (verallgemeinert). Sie funktioniert aber auch für allgemeinere Fälle (siehe unten).
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Induktion — Verallgemeinerung * * * In|duk|ti|on 〈f. 20〉 1. 〈Philos.〉 Schlussfolgerung vom Besonderen, vom Einzelfall, auf das Allgemeine; Sy Epagoge; Ggs Deduktion 2. 〈El.〉 die Verknüpfung zeitlich veränderlicher elektrischer u. magnet. Felder, die durch… … Universal-Lexikon
Verkettung (Mathematik) — Der Begriff Komposition bedeutet in der Mathematik meist die Hintereinanderschaltung von Funktionen, auch als Verkettung oder Hintereinanderausführung bezeichnet. Die Darstellung einer Funktion als Verkettung zweier oder mehrerer, im Allgemeinen… … Deutsch Wikipedia
Richtung (Mathematik) — In der Mathematik heißt eine nicht leere Menge X genau dann gerichtete Menge, wenn auf ihr eine Relation (genannt Richtung) erklärt ist, die folgenden Axiomen genügt … Deutsch Wikipedia
Vollständige Induktion — ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird. Da es sich um unendlich viele Zahlen handelt, kann solch ein Beweis nicht für alle Einzelfälle durchgeführt werden. Er wird daher in zwei… … Deutsch Wikipedia
Beweis (Mathematik) — Ein Beweis ist in der Mathematik die als fehlerfrei anerkannte Herleitung der Richtigkeit oder auch Unrichtigkeit einer Aussage aus einer Menge von Axiomen, die als wahr vorausgesetzt werden, und anderen Aussagen, die bereits bewiesen sind. Man… … Deutsch Wikipedia
Transfinite Induktion — ist eine Beweistechnik in der Mathematik, die die von den natürlichen Zahlen bekannte Induktion auf beliebige wohlgeordnete Klassen verallgemeinert, zum Beispiel auf Mengen von Ordinalzahlen oder Kardinalzahlen, oder sogar auf die echte Klasse… … Deutsch Wikipedia
Sequenz (Mathematik) — Als Folge wird in der Mathematik eine Auflistung (Familie) von endlich oder unendlich vielen fortlaufend nummerierten Objekten (beispielsweise Zahlen) bezeichnet. Dasselbe Objekt kann in einer Folge auch mehrfach auftreten. Das Objekt mit der… … Deutsch Wikipedia
Folge (Mathematik) — Als Folge oder Sequenz wird in der Mathematik eine Auflistung (Familie) von endlich oder unendlich vielen fortlaufend nummerierten Objekten (beispielsweise Zahlen) bezeichnet. Dasselbe Objekt kann in einer Folge auch mehrfach auftreten. Das… … Deutsch Wikipedia
Reihe (Mathematik) — In der Mathematik ist eine (unendliche) Reihe eine Folge, deren Glieder (Partialsummen) als Summen der ersten n Glieder einer anderen Folge gegeben sind. Unendliche Reihen sind ein grundlegendes Instrument der Analysis. Inhaltsverzeichnis 1… … Deutsch Wikipedia
Transitivität (Mathematik) — Zwei transitive und eine nicht transitive Relation, als gerichtete Graphen dargestellt Die Transitivität einer zweistelligen Relation R auf einer Menge ist gegeben, wenn aus x R y und y R z stets x R z folgt. Man nennt R dann transitiv. Die… … Deutsch Wikipedia