Irreflexiv

Irreflexiv
Drei reflexive Relationen, als gerichtete Graphen dargestellt

Die Reflexivität einer zweistelligen Relation R auf einer Menge ist gegeben, wenn x R x für alle Elemente x der Menge gilt (also jedes Element in Relation zu sich selbst steht). Man nennt R dann reflexiv. Die Relation heißt irreflexiv, wenn die Beziehung x R x für kein Element x der Menge gilt (also kein Element in Relation zu sich selbst steht).

Reflexiv und irreflexiv sind nicht das Gegenteil voneinander; es gibt auch Relationen, die weder reflexiv noch irreflexiv sind.

Die Reflexivität ist eine der Voraussetzungen für eine Äquivalenzrelation oder eine Ordnungsrelation; die Irreflexivität ist eine der Voraussetzungen für eine strikte Ordnungsrelation.

Inhaltsverzeichnis

Formale Definition

Ist M eine Menge und R \subseteq M \times M eine zweistellige Relation auf M, dann definiert man (unter Verwendung der Infixnotation):

R ist reflexiv :\Longleftrightarrow \forall x \in M: xRx
R ist irreflexiv :\Longleftrightarrow \forall x \in M: \neg \ xRx

Beispiele

Reflexiv

  • Die Kleiner-Gleich-Relation \le \ auf den reellen Zahlen ist reflexiv, da stets x \le x gilt. Sie ist darüber hinaus eine Totalordnung. Gleiches gilt für die Relation \ge \ .
  • Die gewöhnliche Gleichheit =\ auf den reellen Zahlen ist reflexiv, da stets x = x gilt. Sie ist darüber hinaus eine Äquivalenzrelation.

Irreflexiv

  • Die Ungleichheit \ne auf den reellen Zahlen ist irreflexiv, da nie x\ne x gilt.

Weder reflexiv noch irreflexiv

  • Die zweistellige Relation „findet hübsch“ auf der Menge aller Menschen ist weder reflexiv noch irreflexiv, denn manche Menschen finden sich selbst hübsch, manche Menschen finden sich selbst nicht hübsch.
  • Die folgende Relation auf der Menge der reellen Zahlen ist weder reflexiv noch irreflexiv:
        xRy :\Longleftrightarrow y = x^2
    (Begründung: Für x: = 1 gilt xRx, für x: = 2 gilt \neg xRx.)

Darstellung als gerichteter Graph

Jede beliebige Relation R auf einer Menge M kann als gerichteter Graph aufgefasst werden (Beispiel siehe oben). Die Knoten des Graphen sind dabei die Elemente von M. Vom Knoten a zum Knoten b wird genau dann eine gerichtete Kante (ein Pfeil a \longrightarrow b) gezogen, wenn a R b\ gilt.

Die Reflexivität von R lässt sich im Graphen nun so charakterisieren: Für jeden Knoten a gibt es eine Schleife \stackrel{a}\circlearrowright  . Entsprechend ist die Irreflexivität dadurch gegeben, dass es für keinen Knoten a eine Schleife \stackrel{a}\circlearrowright gibt.

Eigenschaften

  • Mit Hilfe der identischen Relation IdM (die aus allen Paaren (x,x) besteht) kann man die Begriffe auch so charakterisieren:
    R ist reflexiv \Longleftrightarrow Id_M \subseteq R
    R ist irreflexiv \Longleftrightarrow Id_M \cap R = \varnothing
  • Ist die Relation R reflexiv bzw. irreflexiv, dann gilt dies auch für die konverse Relation R − 1. Beispiele: die zu \le konverse Relation ist \ge, die zu <\ konverse ist >\ .
  • Ist die Relation R reflexiv, dann ist die komplementäre Relation Rc irreflexiv. Ist R irreflexiv, dann ist Rc reflexiv. Dabei ist die komplementäre Relation definiert durch
     x R^{\rm c} y :\Longleftrightarrow \neg x R y.
  • Die Relation auf der leeren Menge ist als einzige Relation sowohl reflexiv als auch irreflexiv.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • irreflexiv — ir|re|fle|xiv [auch ... ksi:f]: nicht reflexiv, nicht in Beziehung zu sich selbst stehend (Philos.) …   Das große Fremdwörterbuch

  • Irreflexivität — Drei reflexive Relationen, als gerichtete Graphen dargestellt Die Reflexivität einer zweistelligen Relation R auf einer Menge ist gegeben, wenn x R x für alle Elemente x der Menge gilt (also jedes Element in Relation zu sich selbst steht). Man… …   Deutsch Wikipedia

  • Reflexiv (Mengentheorie) — Drei reflexive Relationen, als gerichtete Graphen dargestellt Die Reflexivität einer zweistelligen Relation R auf einer Menge ist gegeben, wenn x R x für alle Elemente x der Menge gilt (also jedes Element in Relation zu sich selbst steht). Man… …   Deutsch Wikipedia

  • Reflexive Relation — Drei reflexive Relationen, als gerichtete Graphen dargestellt Die Reflexivität einer zweistelligen Relation R auf einer Menge ist gegeben, wenn x R x für alle Elemente x der Menge gilt (also jedes Element in Relation zu sich selbst steht). Man… …   Deutsch Wikipedia

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Glossar mathematischer Attribute — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik zur Löschung vorgeschlagen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel… …   Deutsch Wikipedia

  • Integrabel — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kollinear — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”