Normalgleichung einer Ebene

Normalgleichung einer Ebene

Die Normalgleichung (oder auch Normalengleichung) einer Ebene hat die Form

( \vec r - \vec a ) \cdot \vec n = 0

oder

\vec r \cdot \vec n - \vec a \cdot \vec n = 0

wobei \vec n ein Normalenvektor der Ebene, \vec a der Ortsvektor eines beliebigen Punktes ist, der in der Ebene liegt und  \vec r= \begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} der Vektor der Unbekannten ist. Der Operator \cdot steht für das Skalarprodukt.

Jeder Punkt, dessen Ortsvektor  \vec r die Gleichung erfüllt, liegt in der Ebene.

Ein Punkt, dessen Ortsvektor \vec b die Normalgleichung nicht erfüllt, liegt (bezogen auf die Richtung des Normalenvektors)

  • vor der Ebene, wenn ( \vec r - \vec b ) \cdot \vec n > 0
  • hinter der Ebene, wenn ( \vec r - \vec b ) \cdot \vec n < 0.

Erklärung

bild:Ebene_Normalform.PNG

Der Ortsvektor \vec r eines beliebigen Punktes P der Ebene lässt sich als Summe

\vec r = \vec r_s + \vec r_p

darstellen, wobei \vec r_s senkrecht zur Ebene (also parallel zu \vec n) und \vec r_p parallel zur Ebene (also senkrecht zu \vec n) verläuft.

Dann ist

\vec r \cdot \vec n = (\vec r_p + \vec r_s) \cdot \vec n = \vec r_p \cdot \vec n + \vec r_s \cdot \vec n = 0 + \vec r_s \cdot \vec n,

weil \vec r_p \cdot \vec n (als Skalarprodukt zueinander senkrechter Vektoren) stets 0 ist. Der Anteil \vec r_s ist aber für jeden in der Ebene liegenden Punkt der gleiche, also ist für jeden Punkt der Ebene \vec a \cdot \vec n = \vec r_s \cdot \vec n konstant. Damit folgt die Normalform

\vec r \cdot \vec n = \vec a \cdot \vec n

oder

\vec r \cdot \vec n - \vec a \cdot \vec n = 0.

Siehe auch: Hessesche Normalform, Geradengleichung


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Normalengleichung einer Ebene — Die Normalgleichung (oder auch Normalengleichung) einer Ebene hat die Form oder wobei ein Normalenvektor der Ebene, der Ortsvektor eines beliebigen Punktes ist, der in der Ebene liegt und …   Deutsch Wikipedia

  • Normalgleichung — Die Normalgleichung (oder auch Normalengleichung) einer Ebene hat die Form oder wobei ein Normalenvektor der Ebene, der Ortsvektor eines beliebigen Punktes ist, der in der Ebene liegt und …   Deutsch Wikipedia

  • Ebene (Mathematik) — Die 3 Koordinatenebenen Die Ebene ist ein Grundbegriff der Geometrie. Allgemein handelt es sich um ein unbegrenzt ausgedehntes flaches zweidimensionales Objekt. Hierbei bedeutet unbegrenzt ausgedehnt und flach, dass zu je zwei Punkten auch eine… …   Deutsch Wikipedia

  • Hesse'sche Normalenform — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

  • Hesse'sche Normalform — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

  • Hesse-Normalenform — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

  • Hesse-Normalform — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

  • Hesseform — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

  • Hessesche Normalenform — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

  • Hessesche Normalengleichung — Darstellung von Normale und Abstand der hesseschen Normalform Die hessesche Normalform (Hesse Normalenform), benannt nach Ludwig Otto Hesse, ist in der analytischen Geometrie eine Gleichung, die eine Ebene (E) im euklidischen Raum oder eine …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”