PH (Komplexitätsklasse)

PH (Komplexitätsklasse)
Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.

Die Polynomialzeithierarchie (PH, auch: polynomielle Hierarchie) ist die vermutete Struktur von Komplexitätsklassen zwischen NP und PSPACE. Der Grundgedanke hinter der Polynomialzeithierarchie ist die Frage, ob durch die Hinzunahme von Orakeln, die Leistungsfähigkeit einer Turingmaschine gesteigert werden kann.

Inhaltsverzeichnis

Orakel-Turingmaschine

Orakel sind Erweiterungen einer Turingmaschine. Eine Turingmaschine mit Orakel A (wobei A eine Sprache ist), kann in einem Schritt entscheiden, ob ein Wort w zu A gehört oder nicht.

Symbolisch wird eine solche Konstruktion wie folgt dargestellt:

  • BA bedeutet, dass eine Turingmaschine M mit L(M) = B ein Orakel A befragt.

Mit Blick auf Komplexitätsklassen ergibt sich die folgende Notation:

  • PNP (sprich: "P hoch NP") ist die Menge aller Probleme, die sich von einer Turingmaschine entscheiden lassen, die in Abhängigkeit von der Eingabelänge nur polynomiellen Zeitverbrauch aufweist, zur Lösung jedoch ein Orakel benutzen kann, das in der Lage ist, ein Problem aus NP zu entscheiden.

Mathematische Definition

Die Polynomialzeithierarchie wird mit Hilfe der drei Symbole Δi, Σi und Πi definiert.

Für diese Symbole gilt:

\Delta_0^{\rm P} := \Sigma_0^{\rm P} := \Pi_0^{\rm P} := \mbox{P},

wobei P die Menge aller in Polynomialzeit lösbaren Entscheidungsprobleme ist. Für i ≥ 0 definiert man

\Delta_{i+1}^{\rm P} := \mbox{P}^{\Sigma_i^{\rm P}}
\Sigma_{i+1}^{\rm P} := \mbox{NP}^{\Sigma_i^{\rm P}}
\Pi_{i+1}^{\rm P} := \mbox{coNP}^{\Sigma_i^{\rm P}}

Es gilt also insbesondere:

\Sigma_1^{\rm P}=\mbox{NP}
\Pi_1^{\rm P}=\mbox{coNP}
\Delta_2^{\rm P}=\mbox{P}^{\mbox{NP}}

Eigenschaften

Anders als zunächst vermutet, können sich durch die Polynomialzeithierarchie nicht alle Komplexitätsklassen abbilden lassen. Zwar ist die genaue Struktur der Hierarchie weiterhin unbekannt, jedoch konnte sich bereits folgender Sachverhalt beweisen lassen:

  • \mbox{PH} := \bigcup_{i=0}^{\infty} \Delta_i^{\rm P} \subseteq \mbox{PSPACE}

Ob PH = PSPACE gilt, ist bis heute unbekannt.

Zudem weiß man, dass im Falle der Gleichheit von P und NP die Polynomialzeithierarchie kollabiert, d.h. es gilt:

\forall i\geq 0 : \Delta_i^{\rm P} = \mbox{P} (Analog auch für Σi und Πi)

oder allgemeiner:

  • Falls für ein k\geq 0 gilt: \Sigma_k^{\rm{P}}=\Sigma_{k+1}^{\rm{P}}, so gilt für alle i > k: \Sigma_k^{\rm{P}}=\Sigma_{i}^{\rm{P}}

Literatur

Michael Sipser: Introduction to the Theory of Computation. 2. Auflage. ISBN 053494728X. 


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Komplexitätsklasse P — In der Komplexitätstheorie ist P (auch: PTIME) diejenige Komplexitätsklasse, welche die Entscheidungsprobleme enthält, die in Polynomialzeit für deterministische Turingmaschinen lösbar sind. Diese Problemklasse wird allgemein als die Klasse der… …   Deutsch Wikipedia

  • Komplexitätsklasse NP — NP (nichtdeterministisch polynomielle Zeit) ist eine Komplexitätsklasse aus dem Bereich der Komplexitätstheorie. Sie bezeichnet die Klasse aller Entscheidungsprobleme, die von einer nichtdeterministischen Turingmaschine bezüglich der Eingabelänge …   Deutsch Wikipedia

  • Komplexitätsklasse — Zusammenhang verschiedener Komplexitätsklassen Eine Komplexitätsklasse ist in der Komplexitätstheorie eine Kategorie von Problemen beziehungsweise von Algorithmen, zusammengefasst nach einem gemeinsamen Maß der Komplexität. Definiert wird eine… …   Deutsch Wikipedia

  • Co-RP (Komplexitätsklasse) — co RP (random polynominal) bzw. co RP(ε(n)) bezeichnet die Klasse der Entscheidungsprobleme, für die es einen randomisierten Algorithmus mit polynomineller maximaler Rechenzeit gibt, der jede zu akzeptierende Eingabe mit Wahrscheinlichkeit 1… …   Deutsch Wikipedia

  • BQP (Komplexitätsklasse) — Die Komplexitätsklasse BQP (bounded error quantum polynomial time) ist ein Begriff aus der Komplexitätstheorie, einem Teilgebiet der Theoretischen Informatik. Zu BQP gehören alle Probleme, die auf einem Quantencomputer in Polynomialzeit mit einer …   Deutsch Wikipedia

  • P (Komplexitätsklasse) — In der Komplexitätstheorie ist P (auch: PTIME) diejenige Komplexitätsklasse, welche die Entscheidungsprobleme enthält, die in Polynomialzeit für deterministische Turingmaschinen lösbar sind. Diese Problemklasse wird allgemein als die Klasse der… …   Deutsch Wikipedia

  • SL (Komplexitätsklasse) — In der Komplexitätstheorie bezeichnet L die Klasse der Entscheidungsprobleme, welche von einer deterministischen Turingmaschine mit logarithmischem Platzverbrauch gelöst werden können. Um logarithmischen Platzverbrauch definieren zu können, muss… …   Deutsch Wikipedia

  • Co-NP (Komplexitätsklasse) — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. In der Komplexitätstheorie bezeichnet Co NP eine Komplexitätsklasse …   Deutsch Wikipedia

  • NP (Komplexitätsklasse) — NP (nichtdeterministisch polynomielle Zeit) ist in der Informatik eine Komplexitätsklasse aus dem Bereich der Komplexitätstheorie. Sie bezeichnet die Klasse aller Entscheidungsprobleme, die von einer nichtdeterministischen Turingmaschine… …   Deutsch Wikipedia

  • RP (Komplexitätsklasse) — RP (random polynomial) bzw. RP( (n)) bezeichnet die Klasse der Entscheidungsprobleme, für die es einen randomisierten Algorithmus A mit polynomieller Laufzeit gibt, der jede nicht zu akzeptierende Eingabe mit Wahrscheinlichkeit 1 ablehnt und für… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”