Partial Least Squares

Partial Least Squares
Racine carrée bleue.svg
Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen.

Bitte hilf mit, die Mängel dieses Artikels zu beseitigen, und beteilige dich bitte an der Diskussion!

Die Partial Least Squares (PLS) Pfadanalyse ist ein statistisches Verfahren zur Schätzung von Kausalmodellen. Sie gehört zur Familie der NILES (Nonlinear Iterative Least Squares) Methoden, die vor allem von Herman Wold 1966 entwickelt wurden[1]. Diese iterativen Verfahren bieten die Möglichkeit einer alternativen Schätzung verschiedener statistischer Methoden. Dazu zählen die Hauptkomponentenanalyse, die Kanonische Korrelationsanalyse, die Multiple Regression und die Faktorenanalyse.

Das PLS-Verfahren versucht, die tatsächlichen Fallwerte für ein Kausalmodell mit Hilfe einer Least-Squares-Schätzung genau zu prognostizieren.

Für die PLS-Pfadanalyse existieren verschiedene Software-Applikationen, zum Beispiel LVPLS (Latent Variable Partial Least Square), PLSGraph, SmartPLS, PLS-GUI oder SPAD-PLS[2].

Inhaltsverzeichnis

Literatur

  • Haenlein, M., Kaplan, A.M.: A beginner's guide to partial least squares (PLS) analysis. In: Understanding Statistics. 3, Nr. 4, 2004, S. 283-297, doi:10.1207/s15328031us0304_4.

Weblinks

Weiterführende Informationen

Software

Einzelnachweise

  1. Wold, H. (1966), Estimation of Principal Components and Related Models by Iterative Least Squares, in Multivariate Analysis, ed. P. R. Krishnaiah, New York: Academic Press, Seiten 391-420.
  2. Temme, D., Kreis, H., Hildebrandt, L. (2010): A Comparison of Current PLS Path Modeling Software: Features, Ease-of-Use, and Performance, in: V. E. Vinzi, W. W. Chin, J. Henseler, H. Wang (eds.): Handbook of Partial Least Squares - Concepts, Methods and Applications, Springer, Berlin

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Partial least squares regression — In statistics, the method of partial least squares regression (PLS regression) bears some relation to principal component analysis; instead of finding the hyperplanes of minimum variance, it finds a linear model describing some predicted… …   Wikipedia

  • Non-linear iterative partial least squares — In statistics, non linear iterative partial least squares (NIPALS) is an algorithm for computing the first few components in a principal component or partial least squares analysis. For very high dimensional datasets, such as those generated in… …   Wikipedia

  • Least squares — The method of least squares is a standard approach to the approximate solution of overdetermined systems, i.e., sets of equations in which there are more equations than unknowns. Least squares means that the overall solution minimizes the sum of… …   Wikipedia

  • Total least squares — The bivariate (Deming regression) case of Total Least Squares. The red lines show the error in both x and y. This is different from the traditional least squares method which measures error parallel to the y axis. The case shown, with deviations… …   Wikipedia

  • Ordinary least squares — This article is about the statistical properties of unweighted linear regression analysis. For more general regression analysis, see regression analysis. For linear regression on a single variable, see simple linear regression. For the… …   Wikipedia

  • Least Squares — Die Methode der kleinsten Quadrate (bezeichnender auch: der kleinsten Fehlerquadrate; englisch: Least Squares Method) ist das mathematische Standardverfahren zur Ausgleichungsrechnung. Es ist eine Wolke aus Datenpunkten gegeben, die physikalische …   Deutsch Wikipedia

  • Linear least squares (mathematics) — This article is about the mathematics that underlie curve fitting using linear least squares. For statistical regression analysis using least squares, see linear regression. For linear regression on a single variable, see simple linear regression …   Wikipedia

  • Non-linear least squares — is the form of least squares analysis which is used to fit a set of m observations with a model that is non linear in n unknown parameters (m > n). It is used in some forms of non linear regression. The basis of the method is to… …   Wikipedia

  • Linear least squares — is an important computational problem, that arises primarily in applications when it is desired to fit a linear mathematical model to measurements obtained from experiments. The goals of linear least squares are to extract predictions from the… …   Wikipedia

  • Linear least squares/Proposed — Linear least squares is an important computational problem, that arises primarily in applications when it is desired to fit a linear mathematical model to observations obtained from experiments. Mathematically, it can be stated as the problem of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”