- Pipe (Informatik)
-
Die Pipe (englisch für Rohr, Röhre) bezeichnet einen gepufferten uni- oder bidirektionalen Datenstrom zwischen zwei Prozessen nach dem „FIFO“ (First In - First Out)-Prinzip. Das heißt vereinfacht, dass die Ausgabe eines Prozesses (ein Programm in Ausführung) als Eingabe für einen weiteren verwendet wird. Pipes wurden 1973 von Douglas McIlroy für das Betriebssystem Unix erfunden.
In folgendem Beispiel wird mit grep gezählt, wie viele JPG-Bilddateien (Dateien, deren Name mit .jpg enden) im Verzeichnis Bilder liegen:
ls -R Bilder | grep -ci '\.jpg$'
„ls -R“ durchsucht das Verzeichnis „Bilder“ rekursiv, und gibt alle Dateinamen in diesem Verzeichnis aus. Anstatt sie direkt auf den Bildschirm auszugeben, werden sie vom nächsten Prozess (grep) als Eingabe übernommen. grep sucht in dieser Liste über den regulären Ausdruck „\.jpg$“ alle Namen, die mit .jpg enden. Es kann eine Weiterverarbeitung durch Anfügen weiterer Pipe-Symbole (|) und Kommandos erfolgen, z.B., um eine sortierte Liste der Dateinamen zu erhalten oder um den durch diese JPG-Dateien belegten Speicherplatz zu berechnen, anstatt nur die Anzahl der Dateien zu zählen.
Inhaltsverzeichnis
Erzeugen einer Pipe
Nach Anforderung einer Pipe durch den Systemaufruf pipe() werden vom Betriebssystem zwei Zugriffskennungen (engl.: handles) zurückgeliefert, die zum Schreiben in die, bzw. Lesen aus der Pipe benötigt werden. Auch Kindprozesse erben den Zugriff auf diese handles. Mit der Beendigung des letzten Prozesses, der Zugriff auf eine aktive Pipe hat, wird diese vom Betriebssystem beendet.
Pipe-Varianten
Es gibt anonyme und benannte Pipes.
Anonyme Pipes unterliegen drei erheblichen Einschränkungen:
- Sie können nur in eine Richtung verwendet werden: ein Prozess schreibt, der andere liest.
- Sie können nur für die Kommunikation zwischen eng verwandten Prozessen benutzt werden.
- Die maximale Datenmenge, die eine Pipe enthalten kann, ist relativ klein.
Benannte Pipes (Named Pipes) können dagegen auch zur Kommunikation zwischen Prozessen eingesetzt werden, die nicht miteinander verwandt sind und sich darüber hinaus auf unterschiedlichen Rechnern innerhalb eines Netzwerkes befinden dürfen. Sie sind flexibler als anonyme Pipes und eignen sich für sogenannte Client-Server-Anwendungen (es lassen sich auch RPCs realisieren). Benannte Pipes ermöglichen die gleichzeitige Kommunikation in beide Richtungen, das heißt, Daten können im Vollduplexbetrieb zwischen den Prozessen ausgetauscht werden.
Jeder Prozess, der den Namen einer benannten Pipe kennt, kann über diesen Namen die Verbindung zur Pipe und damit zu anderen Prozessen herstellen.
Pipes in Betriebssystemen
Pipes sind in verschiedenen Betriebssystemen realisiert, die meisten bieten sowohl anonyme als auch benannte Pipes.
OS/2
OS/2 kennt anonyme und benannte Pipes. Benannte Pipes gehören zu den leistungsfähigsten IPC-Methoden, die OS/2 zu bieten hat. Wenn ein Server-Prozess eine benannte Pipe erzeugt, so kann er mehrere Instanzen dieser Pipe generieren, die alle unter demselben Namen angesprochen werden: Eine named pipe kann auch im Multiplexbetrieb arbeiten, so dass ein einzelner Server-Prozess mehrere Clients gleichzeitig bedienen kann.
Unix
Anonyme Pipes
Pipes sind unter Unix eines der mächtigsten Werkzeuge, um die sequentielle Abarbeitung von Befehlen auf einem bestimmten Datenbestand zu ermöglichen.
Bei einer anonymen Pipe ist die Kommunikation dabei auf mehrere Prozesse gleichen Ursprungs beschränkt. Diese (Ursprungs-)Beziehung entsteht meistens durch Forks. In der Shell wird eine anonyme Pipe zum Startzeitpunkt der Programme durch Eingabe eines „|“-Zeichens erzeugt. Die Shell ist dann der (gemeinsame) Elternprozess aller Prozesse und erledigt die Forks automatisch.
Beispiel:
grep '.sshd.*Invalid user' /var/log/messages | awk '{print $NF}' | sort -u
Hier wird die System-Logdatei nach dem Suchbegriff „sshd“ durchsucht, dem in derselben Zeile der Text „Invalid user“ folgt. Anschließend wird das letzte Feld aus der Meldung herausgeschnitten („awk ...“), das hier die IP-Adresse des Rechners enthält, von dem aus der ssh-Zugriff ausging. Zum Schluss werden diese IP-Adressen so sortiert, dass sie nicht mehrfach auftreten („sort --unique“).
Verlangt eine Anwendung die Angabe von Dateinamen für die Ein- oder Ausgabe, so kann man oft durch die Angabe eines Minuszeichens als Dateiname erreichen, dass auf die Standardausgabe geschrieben bzw. von der Standardeingabe gelesen wird. Auf diese Weise ist dann das Schreiben in bzw. das Lesen aus einer Pipe auch mit solchen Anwendungen realisierbar.
Beispiel:
tar cf - /home/user/ogg/mycolouringbook | ssh -l user server "cd /var/ogg && tar xvf -"
Hier wird der Inhalt eines Verzeichnisses mit tar zu einem Archiv zusammengepackt, über eine SSH-Verbindung zu einem anderen Rechner verschickt und dort entpackt.
Named Pipe
Eine Named Pipe, auch FIFO (von first-in-first-out) genannt, ist eine Pipe, die von zwei Prozessen zur Laufzeit über einen Dateinamen zum Lesen oder Schreiben geöffnet werden kann. Bei einer Named Pipe müssen die Prozesse keinen gemeinsamen Ursprung haben, die Prozesse müssen lediglich zum Zugriff auf die Pipe autorisiert sein und den Namen der Pipe kennen.
Beispiel:
mkfifo einefifo cat /var/log/messages > einefifo & grep sshd < einefifo
FIFOs überdauern die sie verwendenden Prozesse, weil sie Bestandteil des Dateisystems sind. Allerdings kann eine FIFO keinen Inhalt haben, so lange sie von keinem Prozess geöffnet ist. Das bedeutet, dass der gepufferte Inhalt verloren geht, wenn ein schreibender Prozess sein Ende der Röhre schließt, ohne dass ein lesender Prozess das andere Ende geöffnet hat.
Standardimplementierung einer unidirektionalen Unix-Pipe
Dieser Sourcecode bewirkt das gleiche wie die Shellanweisung
who | sort
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/wait.h> int main(void){ // pipe_verbindung[0] zum Lesen und pipe_verbindung[1] zum Schreiben int pipe_verbindung[2]; //Initialisierung durch die Funktion Pipe pipe(pipe_verbindung); //Kindprozess erzeugen if (fork()==0){ // dup2 verbindet den Filedeskriptor der Pipe mit dem Filedeskriptor der Standardausgabe dup2(pipe_verbindung[1],1); // der Leseausgang muss geschlossen werden, da dieser Prozess nichts liest close(pipe_verbindung[0]); // Kommando ausführen, Standardausgabe des Kommandos ist mit der Pipe verbunden execlp("who","who",NULL); } // dann zweiten Kindprozess erzeugen else if (fork()==0){ dup2(pipe_verbindung[0],0); close(pipe_verbindung[1]); execlp("sort","sort",NULL); } }
Der schreibende Prozess (Prozess1) hat zunächst auch lesenden Zugriff auf die Pipe (unidirektional). Deshalb muss er seinen Filedeskriptor(0) zum Lesen sperren. Genauso hat der lesende Prozess (Prozess2) zunächst schreibenden Zugriff auf die Pipe. Deshalb muss er seinen Filedeskriptor(1) zum Schreiben sperren. Werden die nicht benötigten Deskriptoren nicht gesperrt, kommt es zu Komplikationen: Wenn zum Beispiel Prozess1 keine Daten mehr zu versenden hat, terminiert er. Allerdings wird Prozess2 nicht terminieren, da noch ein Filedeskriptor(1) zum Schreiben (sein eigener) für weitere Eingaben auf die Pipe gesetzt ist. Er wartet, aber es kommen keine Daten. Ein anderes denkbares Szenario ist, dass Prozess1 nicht terminieren kann, weil er Lesezugriff auf die Pipe hat und für immer und ewig auf Daten des Gegenspielers wartet, aber niemals welche ankommen werden, da er erstens schon längst terminiert ist und zweitens auch niemals welche gesendet hat.
Windows
Windows kennt anonyme und benannte Pipes. Benannte Pipes lassen sich über das Pipe-API analog zu den SMB-Freigaben als \\ServerName\pipe\PipeName ansprechen.
Implementierungen einer unnamed Pipe (anonyme Pipe) in C
Das Programm liest eine Benutzereingabe ein und nutzt dann eine Pipe, um die Daten einem Kindprozess mitzuteilen. Dieser wandelt alle Eingaben in Großbuchstaben (toupper) um und gibt diese aus.
#include <ctype.h> #include <sys/wait.h> #include <sys/types.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <string.h> // Die maximale Laenge der Eingabe wird auf 2048 Bytes festgelegt. #define MAX_ZEICHEN 2048 int main(void) { int fd[2], n, i; pid_t pid; char zeile[MAX_ZEICHEN]; // Wir erstellen die Pipe. Tritt dabei ein Fehler auf, gibt die // Funktion -1 zurueck, so dass wir schon hier moegliche Fehler // abfangen und behandeln koennen. if (pipe(fd) < 0) fprintf(stderr, "Fehler beim Erstellen der pipe()"); // Ein Kindprozess wird erstellt. if ((pid = fork()) > 0) { // Im Elternprozess close(fd[0]); fprintf(stdout, "Eltern : "); fgets(zeile, MAX_ZEICHEN, stdin); write(fd[1], zeile, strlen(zeile)); if (waitpid(pid, NULL, 0) < 0) fprintf(stderr, "Fehler bei waitpid()"); } // In den else-Zweig gelangt nur der Kindprozess else { // Im Kindprozess close(fd[1]); n = read(fd[0], zeile, MAX_ZEICHEN); for (i = 0; i < n; i++) zeile[i] = toupper(zeile[i]); fprintf(stderr, "Kind : "); write(STDOUT_FILENO, zeile, n); } exit(0); }
Geschichte
Pipes wurden 1972/73 von Douglas McIlroy für das Betriebssystem Unix erfunden. Bereits 1964 hatte er zu Beginn des Multics-Projekt (dem Vorläufer von Unix) in einem Memo gefordert:
„We should have some ways of connecting programs like garden hose--screw in another segment when it becomes necessary to massage data in another way.“
– Douglas McIlroy[1]
Quellen
Weblinks
Kategorien:- Betriebssystemkomponente
- Parallelverarbeitung
Wikimedia Foundation.