Satz von Kuratowski

Satz von Kuratowski

Der Satz von Kuratowski (nach Kazimierz Kuratowski) ist ein Satz aus der Graphentheorie, der wichtige Aussagen zu planaren Graphen macht und die Frage nach der Planarität (Plättbarkeit) eines Graphen beantwortet.

Inhaltsverzeichnis

Planarität

Allgemein formuliert ist ein Graph genau dann planar (plättbar), wenn es möglich ist, den Graphen so in die Ebene zu zeichnen, dass sich die Kanten des Graphen nicht schneiden. Die Kanten dürfen sich lediglich in den Knoten des Graphen berühren.

Die folgenden beiden Graphen sind planar, wobei die Planarität von G2 erst deutlich wird, wenn man G2 anders zeichnet.

Abb. 1: Beispielgraphen G1 und G2

Die Graphen K3,3 und K5

Abb. 2: K5
Abb. 3: K3,3

Der Satz von Kuratowski benutzt zwei spezielle Graphen: K5 und K3,3. Bei K5 handelt es sich um den vollständigen Graphen mit 5 Knoten (siehe Abb. 2), bei K3,3 um einen vollständig bipartiten Graphen, der in zwei je dreielementige Teilmengen aufgeteilt ist (siehe Abb. 3). Beide Graphen sind nicht planar. Sie sind sogar die kleinsten nicht-planaren Graphen überhaupt, was direkt aus dem Satz von Kuratowski folgt.

Der Satz von Kuratowski

Ein endlicher Graph ist genau dann planar, wenn er keinen Teilgraphen enthält, der durch Unterteilung von K5 oder K3,3 entstanden ist.

Unterteilung bedeutet hier das beliebig oft wiederholbare (auch nullmalige) Einfügen von neuen Knoten auf Kanten. Mit Teilgraph ist hier ein Graph gemeint, der aus dem ursprünglichen Graphen durch Entfernen von Knoten bzw. Kanten entsteht.

Eine äquivalente Formulierung des Satzes von Kuratowski ist:

Ein Graph G ist genau dann planar, wenn er keinen zu K5 oder K3,3 homöomorphen Teilgraphen enthält.

Eine Variante ist der Satz von Wagner:

Ein Graph G ist genau dann planar, wenn weder K5 noch K3,3 ein Minor von G ist.

Literatur

  • Casimir Kuratowski: Sur le problème des courbes gauches en topologie. In: Fund. Math. 15. 1930, 271-283.

Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Satz von Cantor-Bendixson — Unter der Ableitung einer Menge versteht man in der Mathematik die Menge der Häufungspunkte einer Menge. Vorausgesetzt wird dabei, dass auf der Menge ein Abstandsbegriff oder allgemeiner eine Topologie definiert ist.[1] Präziser spricht man auch… …   Deutsch Wikipedia

  • Erster Satz von Lindelöf — Unter der Ableitung einer Menge versteht man in der Mathematik die Menge der Häufungspunkte einer Menge. Vorausgesetzt wird dabei, dass auf der Menge ein Abstandsbegriff oder allgemeiner eine Topologie definiert ist.[1] Präziser spricht man auch… …   Deutsch Wikipedia

  • Kuratowski — Kazimierz Kuratowski Kazimierz Kuratowski (* 2. Februar 1896 in Warschau, Polen; † 18. Juni 1980 in Warschau) war ein polnischer Mathematiker und Logiker. Kuratowski stammte vom Rechtsanwalt Marek Kuratow und von Rosa von Karzewski ab. Er schloss …   Deutsch Wikipedia

  • Plättbarkeit von Graphen — Der Satz von Kuratowski (nach Kazimierz Kuratowski) ist ein Satz aus der Graphentheorie, der wichtige Aussagen zu planaren Graphen macht und die Frage nach der Planarität (Plättbarkeit) eines Graphen beantwortet. Inhaltsverzeichnis 1 Planarität 2 …   Deutsch Wikipedia

  • Vier-Farben-Satz — Beispiel einer Vier Färbung Der Vier Farben Satz (auch Vier Farben Theorem, früher auch als Vier Farben Vermutung oder Vier Farben Problem bekannt) ist ein mathematischer Satz und besagt, dass vier Farben immer ausreichen, um eine beliebige… …   Deutsch Wikipedia

  • Kazimierz Kuratowski — (* 2. Februar 1896 in Warschau, Polen; † 18. Juni 1980 in Warschau) war ein polnischer Mathematiker und Logiker. Kuratowski stammte vom Rechtsanwalt Marek Kuratow und von Rosa von Karzewski ab. Er schloss 1913 das philologische Chrzanowski… …   Deutsch Wikipedia

  • Lemma von Zorn — Das Lemma von Zorn, auch bekannt als Lemma von Kuratowski Zorn, ist ein Theorem der Mengenlehre, genauer gesagt, der Zermelo Fraenkel Mengenlehre, die das Auswahlaxiom einbezieht. Es ist benannt nach dem deutsch amerikanischen Mathematiker Max… …   Deutsch Wikipedia

  • K3,3 — Der Satz von Kuratowski (nach Kazimierz Kuratowski) ist ein Satz aus der Graphentheorie, der wichtige Aussagen zu planaren Graphen macht und die Frage nach der Planarität (Plättbarkeit) eines Graphen beantwortet. Inhaltsverzeichnis 1 Planarität 2 …   Deutsch Wikipedia

  • K33 — Der Satz von Kuratowski (nach Kazimierz Kuratowski) ist ein Satz aus der Graphentheorie, der wichtige Aussagen zu planaren Graphen macht und die Frage nach der Planarität (Plättbarkeit) eines Graphen beantwortet. Inhaltsverzeichnis 1 Planarität 2 …   Deutsch Wikipedia

  • K 3,3 — Der Satz von Kuratowski (nach Kazimierz Kuratowski) ist ein Satz aus der Graphentheorie, der wichtige Aussagen zu planaren Graphen macht und die Frage nach der Planarität (Plättbarkeit) eines Graphen beantwortet. Inhaltsverzeichnis 1 Planarität 2 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”