Semiperfekter Ring

Semiperfekter Ring

Ein semiperfekter Ring im mathematischen Teilgebiet der Algebra ist ein Ring, über dem jeder endlich erzeugte Linksmodul eine projektive Decke hat. Der Begriff wurde 1959/60 von Hyman Bass eingeführt.

Definition

Im folgenden sei R ein Ring mit 1, J=J(R) das Jacobson-Radikal.

Ein Ring R heißt semiperfekt, wenn er eine der folgenden äquivalenten Eigenschaften besitzt:

  • Jeder einfache R-Links-/Rechtsmodul hat eine projektive Decke.
  • Jeder endlich erzeugte R-Links-/Rechtsmodul hat eine projektive Decke.
  • R/J ist halbeinfach, und jedes Idempotent von R/J lässt sich zu R heben.
  • Es existiert eine Zerlegung  1 = \sum_{i=1}^ne_i mit paarweise orthogonalen, lokalen Idempotenten e1,...,en

Eigenschaften

  • Alle linksartinschen und alle rechtsartinschen Ringe sind semiperfekt.
  • Jeder lokale Ring ist semiperfekt.
  • Ein kommutativer Ring R ist genau dann semiperfekt, wenn R eine endliche direkte Summe von lokalen Ringen ist
  • Ist R semiperfekt und I ein Ideal von R, dann ist auch der Faktorring R/I semiperfekt.
  • Ist R semiperfekt und e \in R ein Idempotent, dann ist auch eRe semiperfekt.

Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Semiperfekt — Ein semiperfekter Ring im mathematischen Teilgebiet der Algebra ist ein Ring, über dem jeder endlich erzeugte Linksmodul eine projektive Decke hat. Der Begriff wurde 1959/60 von Hyman Bass eingeführt. Definition Im folgenden sei R ein Ring mit 1 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”