Shapiro-Verzögerung

Shapiro-Verzögerung

Als Shapiro-Verzögerung, benannt nach Irwin I. Shapiro, bezeichnet man in der Allgemeinen Relativitätstheorie den Effekt, dass sich Licht in der Nähe einer großen Masse für einen weit entfernten Beobachter langsamer als mit Vakuumlichtgeschwindigkeit zu bewegen scheint.

Mithilfe der Shapiro-Verzögerung lässt sich auch die Lichtablenkung durch große Massen, der sogenannte Gravitationslinseneffekt, erklären.

Inhaltsverzeichnis

Effekt

Für schwache, zeitunabhängige Gravitationsfelder erhält man als Näherung für die Metrik in Kugelkoordinaten

g = \begin{pmatrix} 1+2\phi(r) & 0 & 0 & 0 \\ 0 & -1+2\phi(r) & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2{\theta} \end{pmatrix}

Die Näherung lässt sich zum Beispiel gut an der Oberfläche eines Sterns verwenden, an der Oberfläche eines sehr viel dichteren Neutronensterns ist sie jedoch nicht so gut anwendbar und es gibt messbare Abweichungen. Bei der Anwendung auf einen Stern ist \phi (r) = -\frac{Gm}{c^2r} das Gravitationspotential, wobei m die Masse des Sterns, G die newtonsche Gravitationskonstante und c die Lichtgeschwindigkeit ist.

Mit dieser Näherung lässt sich anschaulich die Lichtablenkung durch Gravitation als Brechungseffekt interpretieren. Dazu muss man sich überlegen, was die reale Zeit an einem Raumzeitpunkt ist. Man definiert für ein infinitesimales Zeitintervall :

\mathrm d\tau = \frac{\sqrt{g_{00}(r)}}{c} \mathrm dx^0

als die von einem Beobachter am Raumzeitpunkt x gemessene reale Zeit oder Eigenzeit. Außerdem muss man die Längenkontraktion berücksichtigen und die Länge x nahe der Masse definieren als

\mathrm dx = \sqrt{-g_{11}(r)} \mathrm dr.

Betrachtet man jetzt einen Lichtstrahl so ist seine reale Geschwindigkeit \frac{\mathrm dx}{\mathrm d\tau} = c die Vakuumlichtgeschwindigkeit und seine gemessene Geschwindigkeit ist c\frac{\mathrm dr}{\mathrm dx^0}. Sie stehen nach der obigen Definition der Eigenzeit in folgendem Zusammenhang

c \frac{\mathrm dr}{\mathrm dx^0} = \sqrt{g_{00}(r)} \frac{\mathrm dr}{\mathrm d\tau} = \sqrt{\frac{g_{00}(r)}{-g_{11}(r)}} \frac{\mathrm dx}{\mathrm d\tau} \approx \frac{c}{1 - 2 \phi(x)}

Wenn man beachtet, dass ϕ ein anziehendes Gravitationspotential, also negativ ist, erkennt man, dass die gemessene Geschwindigkeit des Lichtstrahls kleiner ist als die Vakuumlichtgeschwindigkeit. Man kann also das Gravitationsfeld in dieser Betrachtung als Medium mit der ortsabhängigen Brechzahl n(x) \approx 1 - 2 \phi(x) interpretieren. Da sich Licht entlang von Geodäten ausbreitet, lässt sich dies also auch so formulieren, dass nahe einer Masse die Geodäten im Raum gekrümmt sind. Neben der Lichtkrümmung führt dies auch zur Lichtverzögerung, die nach ihrem Entdecker als Shapiro-Verzögerung bezeichnet wird.

Am Sonnenrand ist ϕ = 10 6 woraus sich als Brechzahl n = 1{,}000\,002 ergibt. Der Effekt ist also im Vergleich zur gewöhnlichen optischen Brechung sehr klein. Dementsprechend klein ist auch der Winkel der Lichtablenkung im Gravitationsfeld.

Experimentstatus

Die Lichtverzögerung wurde von Irwin I. Shapiro im Jahr 1964 theoretisch vorhergesagt[1] und erstmals 1968[2] und 1971[3] gemessen. Hier wurde die Zeitverschiebung mittels an der Venus reflektierter Radarsignale gemessen, während diese sich von der Erde aus hinter der Sonne befand, so dass die Radarwellen nahe am Sonnenrand passieren mussten. Die Genauigkeit der Messungen belief sich anfangs noch auf mehrere Prozent. Bei wiederholten Messungen und später auch durch Messungen mit Hilfe von Raumsonden (Mariner, Viking) anstelle der Venus konnte die Genauigkeit auf 0,1 % gesteigert werden.

Die bisher genaueste Messung des Effekts gelang 2002 bei der Konjunktion der Raumsonde Cassini mit der Sonne. Frequenzmessungen im Ka-Band ermöglichten die Bestimmung der Shapiro-Verzögerung mit einer Genauigkeit von 0,001 %.[4]

Einzelnachweise

  1. Irwin I. Shapiro: Fourth Test of General Relativity in Physical Review Letters 13 (1964), 789 - 791 doi:10.1103/PhysRevLett.13.789
  2. Irwin I. Shapiro et al.: Fourth Test of General Relativity: Preliminary Results. In: Physical Review Letters 20, 1968, S12651269
  3. Irwin I. Shapiro et al.: Fourth Test of General Relativity: New Radar Result. In: Physical Review Letters 26, 1971, S11321135
  4. B.Bertotti, L: Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425 (2003), 374376 online

Literatur

  • C. M. Will: Theory and experiment in gravitational physics. Cambridge University Press, Cambridge (1993). Standardwerk zur experimentellen Überprüfung der ART
  • C. M. Will: Was Einstein Right?: Putting General Relativity to the Test. Basic Books (1993). Eine populärwissenschaftliche Zusammenfassung desselben
  • C. M. Will: The Confrontation between General Relativity and Experiment, Living Reviews in Relativity. (2006). Kürzere, aber aktuellere Fassung von Theory and experiment in gravitational physics

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Shapiro — ist die englische Schreibweise des traditionellen aschkenasischen Familiennamens Schapiro. Alternative Namensformen sind Spira, Spiro, Schapira, Schapiro oder Szpiro. Zur Onomastik (Herkunft und Bedeutung des Namens) siehe Spira. Shapiro ist der… …   Deutsch Wikipedia

  • Shapiro-Effekt — Als Shapiro Verzögerung, benannt nach Irwin I. Shapiro, bezeichnet man in der Allgemeinen Relativitätstheorie den Effekt, dass sich Licht in der Nähe einer großen Masse für einen weit entfernten Beobachter langsamer als mit… …   Deutsch Wikipedia

  • Irwin Shapiro — Irwin I. Shapiro (* 1929 in New York City) ist ein US amerikanischer Astrophysiker. Seit 1982 ist er Professor an der Harvard University[1]. Von 1982 bis 2004 war er der Direktor des Harvard Smithsonian Center for Astrophysics[2][3].… …   Deutsch Wikipedia

  • Irwin I. Shapiro — (* 1929 in New York City) ist ein US amerikanischer Astrophysiker. Seit 1982 ist er Professor an der Harvard University[1]. Von 1982 bis 2004 war er der Direktor des Harvard Smithsonian Center for Astrophysics[2][3]. Inhaltsverzeichnis 1 …   Deutsch Wikipedia

  • Tests der allgemeinen Relativitätstheorie — werden zur Überprüfung des Standardmodells zur Beschreibung der Gravitation, der allgemeinen Relativitätstheorie (ART) Albert Einsteins, durchgeführt. Zur Zeit ihrer Einführung im Jahre 1915, hatte die ART keine solide empirische Grundlage. Sie… …   Deutsch Wikipedia

  • Lichtablenkung — Als Shapiro Verzögerung, benannt nach Irwin I. Shapiro, bezeichnet man in der Allgemeinen Relativitätstheorie den Effekt, dass sich Licht in der Nähe einer großen Masse für einen weit entfernten Beobachter langsamer als mit… …   Deutsch Wikipedia

  • Lichtkrümmung — Als Shapiro Verzögerung, benannt nach Irwin I. Shapiro, bezeichnet man in der Allgemeinen Relativitätstheorie den Effekt, dass sich Licht in der Nähe einer großen Masse für einen weit entfernten Beobachter langsamer als mit… …   Deutsch Wikipedia

  • Einsteintensor — Die allgemeine Relativitätstheorie (kurz: ART) beschreibt die Wechselwirkung zwischen Materie (einschließlich Feldern) einerseits und Raum und Zeit andererseits. Sie deutet Gravitation als geometrische Eigenschaft der gekrümmten vierdimensionalen …   Deutsch Wikipedia

  • Planet Venus — Venus   Venus in natürlichen Farben, aufgeno …   Deutsch Wikipedia

  • Windstrukturen auf dem Planeten Venus — Venus   Venus in natürlichen Farben, aufge …   Deutsch Wikipedia

Share the article and excerpts

Direct link
https://de-academic.com/dic.nsf/dewiki/1280399 Do a right-click on the link above
and select “Copy Link”