Signum (Mathematik)

Signum (Mathematik)

Der Begriff Signum (lateinisch für Zeichen) wird in der Mathematik in zwei Zusammenhängen verwendet, beide Male im Sinne eines „Vorzeichens“.

Inhaltsverzeichnis

Signumfunktion auf den reellen Zahlen

Graph der Vorzeichenfunktion

Die Signumfunktion (auch Vorzeichenfunktion) ist eine Funktion aus der Menge der reellen Zahlen in die Menge {−1, 0, 1} und wird in der Regel wie folgt definiert:

\sgn(x):=
\begin{cases}
     +1 & \; x>0 \\
\;\;\,0 & \; x=0 \\
     -1 & \; x<0 \\
\end{cases}

Sie ordnet jedem x > 0 eine +1, x = 0 eine 0 und jedem x < 0 eine −1 zu.

Bei Anwendungen in der Rechentechnik verzichtet man meist auf eine Sonderstellung der 0, indem man sie den positiven, negativen oder beiden Zahlenbereichen zuordnet. Dadurch lässt sich das Vorzeichen einer Zahl in einem einzigen Bit kodieren. Die Signumfunktion ist darüber hinaus die schwache Ableitung der Betragsfunktion.

Signumfunktion auf den komplexen Zahlen

Signum von vier komplexen Zahlen

Im Vergleich zum Signum reeller Zahlen wird nur selten die folgende Erweiterung auf komplexe Zahlen betrachtet:

\sgn(z)=
\begin{cases}
 \frac {z} {|z|} & \; z\ne 0 \\
 0 & \; z=0 \\
\end{cases}

Das Ergebnis dieser Funktion liegt auf dem Einheitskreis und besitzt dasselbe Argument wie der Ausgangswert, insbesondere gilt

\sgn\left(r\mathrm e^{\mathrm i\varphi}\right)=\mathrm e^{\mathrm i\varphi},\qquad\mathrm{falls}\ r>0.

Beispiel (im Bild rot):

\operatorname{sgn}(z_1) = \operatorname{sgn}(2 + 2\mathrm i) = \frac {2 + 2\mathrm i} {\left| 2 + 2\mathrm i \right|} = \frac {2 + 2\mathrm i} {2\sqrt2} = \frac {1 + \mathrm i} {\sqrt{2}} = \frac12\sqrt2+\frac{\mathrm i}2\sqrt2.

Rechenregeln

Es gelten die folgenden Rechenregeln in Bezug auf die Signumfunktion angewendet auf die komplexen Zahlen z und w:

\operatorname{sgn}\left(\frac{1} {z}\right) = \frac {1} {\operatorname{sgn}(z)} = \overline{\operatorname{sgn}(z)}

Signum von Permutationen

Jede Permutation einer endlichen Menge lässt sich entweder aus einer geraden oder aus einer ungeraden Zahl von Transpositionen, also Vertauschungen von nur zwei Elementen, zusammensetzen. Im ersten Fall hat die Permutation das Signum 1, im zweiten Fall das Signum -1. Dies ist äquivalent dazu, dass die Anzahl der Fehlstände der Permutation gerade bzw. ungerade ist, also eine fixe Parität hat.

Eine rein formale Definition des Signums einer Permutation der Menge \left\{1,2,\ldots ,n\right\} ist durch folgende Abbildung gegeben:

\begin{align}
\operatorname{sign}: S_n & \to\mathbb Z^\times=\{-1,1\}\\
\sigma&\mapsto\prod_{1\le i<j\le n} \frac{\sigma(i)-\sigma(j)}{i-j}
\end{align}

Dabei ist Sn die Menge aller Permutationen einer n-elementigen Menge (die symmetrische Gruppe) und σ ein Element von Sn. Ferner bezeichnet σ(i) dasjenige Element einer n-elementigen Menge M, auf welches das i-te Element dieser Menge M vermöge σ abgebildet wird.

Das Signum \operatorname{sign}\sigma einer Permutation σ ist 1, falls σ eine gerade Anzahl von Fehlständen hat, und −1, falls σ eine ungerade Anzahl von Fehlständen hat. Unter einem Fehlstand der Permutation σ versteht man hierbei ein Paar \left(i,j\right) von Elementen i und j der Menge \left\{1,2,\ldots,n\right\} mit i < j und \sigma\left(i\right)>\sigma\left(j\right).

Ableitung der Signumfunktion

Die Signumfunktion ist weder klassisch differenzierbar, noch besitzt sie eine schwache Ableitung. Allerdings ist sie im Sinne von Distributionen differenzierbar, und ihre Ableitung ist , wobei δ die Delta-Distribution bezeichnet.

Siehe auch

Literatur

  • Königsberger: Analysis 1. 6 Auflage. Springer, Berlin 2003, ISBN 354040371X, S. 101 (Signum auf den reellen Zahlen).
  • Hildebrandt: Analysis 1. 2 Auflage. Springer, Berlin 2005, ISBN 3540253688, S. 133 (Signum auf den reellen Zahlen).

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Signum — Das Wort Signum (lat.: Zeichen) bezeichnet allgemein ein Symbol oder Emblem eine Kurzform der Unterschrift (Zeichnung eines Dokuments, von lateinisch signatum „er hat es gezeichnet“ zu signum „Zeichen“), siehe auch Namenszeichen ein römisches… …   Deutsch Wikipedia

  • Signum (Programm) — Signum (das Zeichen), programmiert von Franz Schmerbeck war 1986 eine der ersten voll grafikbasierten Textverarbeitungen für den Atari ST. Durch eine Vielzahl von Free und Shareware Fonts und einen Fonteditor zur Erzeugung beliebiger neuer… …   Deutsch Wikipedia

  • Signum-Funktion — Der Begriff Signum (lat.: Zeichen) wird in der Mathematik in zwei Zusammenhängen verwendet, beide Male im Sinne eines „Vorzeichens“. Inhaltsverzeichnis 1 Signumfunktion auf den reellen Zahlen 2 Signumfunktion auf den komplexen Zahlen 3… …   Deutsch Wikipedia

  • Stetigkeit (Mathematik) — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… …   Deutsch Wikipedia

  • Abbildung (Mathematik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Vorzeichen (Mathematik) — Der Begriff Signum (lat.: Zeichen) wird in der Mathematik in zwei Zusammenhängen verwendet, beide Male im Sinne eines „Vorzeichens“. Inhaltsverzeichnis 1 Signumfunktion auf den reellen Zahlen 2 Signumfunktion auf den komplexen Zahlen 3… …   Deutsch Wikipedia

  • Determinante (Mathematik) — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus einen Skalar zuordnet. Zum Beispiel hat die Matrix die Determinante Formeln für größere Matrizen werden weiter …   Deutsch Wikipedia

  • LR-Maximum — Unter einer Permutation (von lat. permutare „(ver)tauschen“) versteht man die Veränderung der Anordnung einer Menge durch Vertauschen ihrer Elemente. In der Mathematik ist eine Permutation eine bijektive Selbstabbildung einer in der Regel… …   Deutsch Wikipedia

  • Permutationsoperator — Unter einer Permutation (von lat. permutare „(ver)tauschen“) versteht man die Veränderung der Anordnung einer Menge durch Vertauschen ihrer Elemente. In der Mathematik ist eine Permutation eine bijektive Selbstabbildung einer in der Regel… …   Deutsch Wikipedia

  • Formelsammlung Algebra — Die Formelsammlung zur Algebra ist ein Teil der Formelsammlung, in der auch Formeln der anderen Fachbereiche zu finden sind. Inhaltsverzeichnis 1 Grundrechenarten 2 Arithmetische Notation 3 Axiome 4 Elementare Funktionen 4.1 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”