TDNN

TDNN
Schema eines TDNNs, mit dargestellten Aktivierungen.

Ein Time Delay Neural Network (TDNN, zu deutsch etwa Zeitverzögertes Neuronales Netz) ist ein mehrschichtiges künstliches neuronales Netz, das durch die Verwendung von Zeitfenstern über mehrere Eingaben in der Lage ist zeitliche Abhängigkeiten von Eingaben zu verarbeiten. Die Benennung rührt aus der Verwendung von Verzögerungselementen (Delays) her, mit denen mehrere Zeitschritte parallel angelegt werden.

Ein künstliches neuronales Netz ist ein Modell aus der Neuroinformatik, das durch biologische neuronale Netze motiviert ist. Künstliche neuronale Netze können Aufgaben erlernen und werden häufig dort eingesetzt, wo eine explizite Modellierung eines Problems schwierig oder unmöglich ist. Beispiele sind die Gesichts- und Spracherkennung.

Inhaltsverzeichnis

Struktur

Um dem Netzwerk eine zeitlich invariante Verarbeitung zu erlauben werden bei einem TDNN die Eingaben mehrerer Zeitpunkte zugleich angelegt. Die Verwendung mehrerer Schichten von Neuronen unterstützt die Erkennung unabhängig vom zeitlichen Auftreten im Eingabestrom.

Die Eingaben werden bei einem TDNN in einer Matrix angeordnet. Eine Spalte kann dabei mehrere Werte enthalten und entspricht einem Zeitschritt. Bei jeder neuen Eingabe werden die Spalten der vergangenen Eingaben um einen Schritt verschoben, wobei die älteste Eingabe herausfällt.

Die Eingabematrix wird dann an eine verdeckte Schicht gereicht, die aus einer Matrix von Neuronen besteht. Jede dortige Spalte von Neuronen erhält dabei nur eine Auswahl (Fenster) der Eingaben. Dieses Fenster wird für die nächsten Spalten der Neuronenmatrix um jeweils einen Schritt verschoben. Die Fensterbreite ist dabei frei wählbar, muss aber für die gewünschte Invarianz geeignet bestimmt werden. Es können mehrere, hintereinander angeordnete verdeckte Schichten existieren. Die Ausgabeschicht erhält schließlich das komplette Zeitfenster der vorhergehenden verdeckten Schicht.

Eingelernt werden können sie mit dem Backpropagation-Verfahren. Da die zur jeweiligen ersten Spalte, der verdeckten Schichten, zeitlich verschobenen Neuronen jeweils gleiche Eingaben aus vorherigen Zeitschritten erhalten und damit die gleiche Verarbeitung vornehmen, sollen auch die Gewichte mit den Neuronen der ersten Spalte übereinstimmen. Dazu wird das Lernverfahren so abgeändert, dass Neuronen verschiedener Zeitschritte die gleiche Änderung erfahren, welche über den Mittelwert der Gewichtsänderungen bestimmt wird. Bei der Berechnung der Neuronenaktivierungen kann dabei eine Neuberechnung der zeitlich verschobenen Neuronen entfallen und stattdessen auf die Aktivierungen vorheriger Zeitschritte zurückgegriffen werden.

Eigenschaften

Durch diese schrittweise Verfeinerung wird sichergestellt, dass das TDNN komplexe, nicht lineare Eingaben verarbeitet und die Erkennung zeitlich invariant erfolgt. Zusätzlich wird durch die Verschachtelung gewährleistet, dass die Anzahl der Verbindungen gering bleibt.

Nachteile eines TDNN ist die verwendete feste Fensterbreite. Die konstante Zahl der dabei angelegten Eingaben ist eine starke Einschränkung für Signale unterschiedlicher Länge.

Das Time Delay Neural Network ist äquivalent zum Filter mit endlicher Impulsantwort (FIR-Filter).

Anwendung

Angewendet wurden TDNNs vor allem in der Spracherkennung. Ihre Bedeutung haben sie dort aber mittlerweile an die Hidden Markov Models verloren.

Literatur

  • Alexander Waibel et al., Phoneme Recognition Using Time-Delay Neural Networks, IEEE Transactions on Acoustics, Speech and Signal Processing, Band 37, Nr. 3, S. 328-339, März 1989.
  • TDNN Fundamentals, Kapitel aus dem Online Handbuch des SNNS

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • TDNN — time delay neural network …   Medical dictionary

  • TDNN — • time delay neural network …   Dictionary of medical acronyms & abbreviations

  • TDNN — abbr. Time Delay Neural Net (NN) …   United dictionary of abbreviations and acronyms

  • Time Delay Neural Network — Schema eines TDNNs, mit dargestellten Aktivierungen. Ein Time Delay Neural Network (TDNN, zu deutsch etwa Zeitverzögertes Neuronales Netz) ist ein mehrschichtiges künstliches neuronales Netz, das durch die Verwendung von Zeitfenstern über mehrere …   Deutsch Wikipedia

  • Handwriting recognition — is the ability of a computer to receive and interpret intelligible handwritten input from sources such as paper documents, photographs, touch screens and other devices. The image of the written text may be sensed off line from a piece of paper by …   Wikipedia

  • Artificial neural network — An artificial neural network (ANN), usually called neural network (NN), is a mathematical model or computational model that is inspired by the structure and/or functional aspects of biological neural networks. A neural network consists of an… …   Wikipedia

  • Artificial Neural Network — Réseau de neurones Pour les articles homonymes, voir Réseau. Vue simplifiée d un réseau artificiel de neurones Un réseau de neurones artificiel est un modèle de c …   Wikipédia en Français

  • Neuronal network — Réseau de neurones Pour les articles homonymes, voir Réseau. Neurosciences …   Wikipédia en Français

  • Reseau de neurones — Réseau de neurones Pour les articles homonymes, voir Réseau. Neurosciences …   Wikipédia en Français

  • Réseau de neurone — Réseau de neurones Pour les articles homonymes, voir Réseau. Neurosciences …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”