Translationsinvarianz

Translationsinvarianz

Als translationsinvariant werden in der Mathematik Abbildungen bezeichnet, deren Wert sich unter einer Translation nicht ändert. Genauer heißt ein Funktional F(f) \to \R translationsinvariant, wenn sich der Wert des Funktionals nicht ändert, wenn die Funktion f:\R^n \to \R einer Translation mit Verschiebungsvektor a \in \R^n unterzogen wird: Tf(x) = f(xa).

Beispielsweise ist jede konstante Funktion translationsinvariant. Ein interessanteres Beispiel ist das Lebesgue-Integral. Anschaulich bedeutet dessen Translationsinvarianz, dass sich der Wert eines Integrals nicht ändert, wenn der Definitionsbereich verschoben wird, genauso wie sich das Volumen eines Körpers nicht durch reine Verschiebung im Raum ändert.

Allgemeine Definition: Translationsinvarianz in Gruppen

Allgemeiner ist es möglich, Translationsinvarianz bei Gruppenoperationen zu definieren. Sei X eine Menge mit einer transitiven Operation einer Gruppe G. Dann induziert

x \to gx

für jedes Element g von G einen Automorphismus von X und damit einen Automorphismus auf jeder funktoriellen Konstruktion F(X) auf X. Die G-Invarianten in F(X) werden translationsinvariant genannt.

Für eine Gruppe G und X=G kann man durch

h \to gh und h \to hg^{-1}

zwei G-Räume definieren, die zugehörige Translationsinvarianz wird Links- bzw. Rechtsinvarianz genannt.

Beispielsweise ist die Lie-Algebra einer Lie-Gruppe der Raum der linksinvarianten Vektorfelder. Ein Haar-Maß auf einer topologischen Gruppe ist ebenfalls translationsinvariant. Das Petersson-Skalarprodukt auf der oberen Halbebene wird mit Hilfe eines SL(2,R)-invarianten Maßes definiert.

Sonstiges

Translationsinvariant ist auch eine stochastische Funktion, die nur um additive (oder subtraktive) Komponenten verändert wird. Hierbei werden die Gesetzmäßigkeiten, die mit der Funktion beschrieben werden, nicht berührt. Nur die Mittel- bzw. Skalenwerte verändern sich.

Literatur


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Translationsinvariant — Als Translationsinvariant werden in der Mathematik Abbildungen bezeichnet, deren Wert sich unter einer Translation nicht ändert. Genauer heißt ein Funktional translationsinvariant, wenn sich der Wert des Funktionals nicht ändert, wenn die… …   Deutsch Wikipedia

  • Fast überall — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Massraum — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Maß (Mathematik) — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Maßraum — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Messbarer Raum — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Σ-Additivität — Die Maßtheorie ist ein Teilgebiet der Mathematik, das die elementargeometrischen Begriffe Streckenlänge, Flächeninhalt, Volumen verallgemeinert und es dadurch ermöglicht, auch komplizierteren Mengen ein Maß zuzuordnen. Sie bildet das Fundament… …   Deutsch Wikipedia

  • Abelsche Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum …   Deutsch Wikipedia

  • Auflösbare Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum …   Deutsch Wikipedia

  • Bloch-Funktion — Die Bloch Funktion oder Bloch Welle (nach Felix Bloch) ist die allgemeinste Lösung der stationären Schrödingergleichung für ein x0 periodisches Potential (z. B. die Wellenfunktion eines Elektrons in einem kristallinen Festkörper). Die Form… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”