Wilcoxon signed-rank Test

Wilcoxon signed-rank Test

Der Wilcoxon-Vorzeichen-Rang-Test ist ein statistischer Test für die Häufigkeitsverteilung gepaarter Stichproben. Im Anwendungsbereich ergänzt er den Vorzeichentest, da er nicht nur die Richtung der Differenzen, sondern auch die Stärke der Differenzen zwischen zwei gepaarten Stichproben berücksichtigt. Der hier vorgestellte Test ist unabhängig vom Verteilungstyp und wird daher als nichtparametrisch bezeichnet.

Dieser statistische Test wurde vom Chemiker und Statistiker Frank Wilcoxon (1892–1965) vorgeschlagen und durch das Lehrbuch von Sidney Siegel – Nonparametric Statistics for the Behavioural Sciences – populär gemacht.

Beispiel

Ein Beispiel für dessen Anwendung: Ein statistisch versierter Bauer möchte feststellen, ob Rinder Heu oder Stroh vorziehen. Er teilt eine Fläche in zwei Bereiche ein, zwischen denen die Tiere frei hin und her wechseln können. Im einen Bereich bietet er den fünf Rindern Stroh an, im anderen Heu. Jede halbe Stunde notiert er, wieviele Tiere sich in welchem Bereich aufhalten; er erhält N = 6 Paare von Stichproben.

Das Ergebnis seiner Beobachtungen ist eine Tabelle, und er berechnet auch die Differenzen aus den Werten:

Tiere beim Heu Tiere beim Stroh Differenz
4 1 +3
3 2 +1
2 3 -1
5 0 +5
5 0 +5
3 2 +1

Dann werden die Differenzen nach der Größe geordnet (das Vorzeichen wird dabei nicht berücksichtigt); und jeder Differenz wird ein Rang zugeordnet – die größte Differenz erhält den höchsten Rang. Sind mehrere Differenzen gleichrangig, wird jedem Wert der durchschnittliche Rang zugeordnet.

Differenz Rang
+1 2
+1 2
-1 2
+3 4
+5 5.5
+5 5.5

Rang: Die drei 1er Werte müssten die Ränge 1 bis 3 belegen, da sie aber gleichwertig sind, wird der Mittelwert ihrer Ränge eingetragen, also (1+2+3)/3=2. Bei den 5er Werten ebenso: (5+6)/2=5.5

Die Rangsumme der positiven Differenzen beträgt

T+ = 2+2+4+5.5+5.5 = 19

Entweder verfügt man über eine Tabelle über diese T+- und N-Werte und kann so die Wahrscheinlichkeit einer solchen Beobachtung direkt bestimmen, oder man berechnet – als Näherung – daraus den normalverteilten z-Wert:

z = \frac{T-\frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}}

z Signifikanz
> 1.65 oder < -1.65 signifikant mit p = 0.1
> 1.96 oder < -1.96 signifikant mit p = 0.05
> 2.58 oder < -2.58 signifikant mit p = 0.01
> 2.81 oder < -2.81 signifikant mit p = 0.005
> 3.29 oder < -3.29 signifikant mit p = 0.001

p mit 100 multipliziert gibt jeweils den Wert der Irrtumswahrscheinlichkeit – das heißt, die Wahrscheinlichkeit, dass eine Beobachtung durch zufällige Effekte zustande gekommen ist. Weitere Werte für z sind in der Standardnormalverteilungstabelle aufgelistet.

In diesem Beispiel ist z = 1.7821. Die Beobachtungen des Bauers sind also mit p < 0.1 und p > 0.05 vielleicht signifikant. Damit haben Rinder zu einem 10%-Signifikanzniveau eine Vorliebe für Heu. Der mittels der angegebenen Formel berechnete z-Wert ist aber nur eine Näherung und nur für einen großen Stichprobenumfang zuverlässig. Das Tabellenwerk aus dem Buch von Sidney Siegel enthält p-Werte für bis zu N = 15 Stichproben.

Vergleich mit dem Vorzeichentest

Fünf Stichproben tragen ein positives Vorzeichen (+), eine ein negatives (-). Gemäß der Tabelle der kritischen Werte (MacKinnon, 1964) kann man bei diesem Beispiel lediglich von p < 0.5 ausgehen (d.h. weniger als 50 Prozent Irrtumswahrscheinlichkeit). Hätten alle sechs Stichproben das gleiche Vorzeichen, läge p zwischen 0.02 und 0.1 - hier wurde also eindrücklich gezeigt, dass das Verfahren von Wilcoxon besonders bei kleineren Stichproben-Umfängen brauchbare Resultate liefert.

Literatur

  • Siegel, Sidney. - Nichtparametrische statistische Methoden - Eschborn b. Frankfurt a. M. : Verlag Dietmar Klotz, 2001. ISBN 3-88074-102-6.
  • Siegel, Sidney. - Nonparametric statistics for the behavioral sciences - New York [etc.] : McGraw-Hill, c. 1988 (vergriffen)

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wilcoxon signed-rank test — The Wilcoxon signed rank test is a non parametric alternative to the paired Student s t test for the case of two related samples or repeated measurements on a single sample. The test is named for Frank Wilcoxon (1892 ndash;1965) who, in a single… …   Wikipedia

  • Wilcoxon signed rank test — signed rank t …   Medical dictionary

  • Wilcoxon rank sum test signed rank test — Wil·cox·on rank sum test, signed rank test (wil kokґsən) [Frank Wilcoxon, American chemist and statistician, 1892–1962] see rank sum test and signed rank test, under test …   Medical dictionary

  • signed rank test — a nonparametric statistical test for ordinal data, comparing two populations of data by examining the differences between matched pairs in the two populations. It is based on the signed rank statistic, calculated by arranging all samples in order …   Medical dictionary

  • Rank test — In statistics, a rank test is any test involving ranks. Examples include: *Wilcoxon signed rank test *Kruskal Wallis one way analysis of variance **Mann Whitney U (special case) *Page s trend test *Friedman test *Rank products …   Wikipedia

  • Wilcoxon — is a surname, and may refer to: * Henry Wilcoxon, an actor * Frank Wilcoxon, chemist and statistician, inventor of two non parametric tests for statistical significance: ** The Wilcoxon signed rank test ** The Wilcoxon rank sum test (also known… …   Wikipedia

  • Wilcoxon Test — The Wilcoxon test, which refers to either the Rank Sum test or the Signed Rank test, is a nonparametric test that compares two paired groups. The test essentially calculates the difference between each set of pairs and analyzes these differences …   Investment dictionary

  • Student's t-test — A t test is any statistical hypothesis test in which the test statistic follows a Student s t distribution if the null hypothesis is supported. It is most commonly applied when the test statistic would follow a normal distribution if the value of …   Wikipedia

  • Frank Wilcoxon — (1892–1965) was a chemist and statistician, known for the development of statistical tests. Frank Wilcoxon was born to American parents on 2 September 1892 in County Cork, IrelandBradley, R.A. (1966) Obituary: Frank Wilcoxon. Biometrics 22(1):… …   Wikipedia

  • Nicht-parametrischer Test — Der Zweig der Statistik, der als parameterfreie Statistik bekannt ist, beschäftigt sich mit parameterfreien statistischen Modellen und parameterfreien statistischen Tests. Andere gebräuchliche Bezeichnungen sind nicht parametrische Statistik oder …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”