- Zentrierte Polygonale Zahl
-
Eine zentrierte Polygonalzahl ist eine Zahl, zu der sich ein regelmäßiges Polygon (Vieleck) in einem bestimmten Muster und mit einer entsprechenden Zahl an Steinen legen lässt. Das Legemuster beginnt mit einem einzelnen Stein im Mittelpunkt des Polygons. Um diesen Zentrumsstein werden weitere Polygone gelegt, wobei sich deren Seitenlängen von innen nach außen jeweils um eins erhöhen. Abhängig von der Anzahl der Seiten spricht man beispielsweise von zentrierten Dreieckszahlen, zentrierten Quadratzahlen, zentrierten Fünfeckszahlen, zentrierten Sechseckszahlen, u.s.w. Die folgenden Bilder zeigen einige Beispiele.
Aufgrund ihrer Verwandtschaft mit einer geometrischen Figur zählen die zentrierten Polygonalzahlen zur Klasse der figurierten Zahlen. Eine andere Art, Zahlen auf Polygone zurückzuführen, stellen die (dezentralen) Polygonalzahlen dar.Berechnung
Die n-te zentrierte k-Eckszahl berechnet sich nach der Formel
Alternativ kann man die n-te zentrierte k-Eckszahl auch mit Hilfe der (n − 1)-ten Dreieckszahl Δn − 1 nach der Formel
berechnen.
-
Wikimedia Foundation.