Entwicklungssatz von Shannon — Der Entwicklungssatz von Claude Shannon ist ein Satz über Boolesche Funktionen, der die Shannon Zerlegung verwendet. Er lautet wie folgt: y = f(x1,...,xi,...,xn) … Deutsch Wikipedia
Laplace'scher Entwicklungssatz — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus eine Zahl zuordnet. Zum Beispiel hat die Matrix die Determinante … Deutsch Wikipedia
Laplacescher Entwicklungssatz — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus eine Zahl zuordnet. Zum Beispiel hat die Matrix die Determinante … Deutsch Wikipedia
Grassmannscher Entwicklungssatz — Kreuzprodukt Das Kreuzprodukt (auch Vektorprodukt, vektorielles Produkt oder äußeres Produkt genannt) zweier Vektoren und im dreidimensionalen reellen Vektorraum ist ein … Deutsch Wikipedia
Graßmannscher Entwicklungssatz — Kreuzprodukt Das Kreuzprodukt (auch Vektorprodukt, vektorielles Produkt oder äußeres Produkt genannt) zweier Vektoren und im dreidimensionalen reellen Vektorraum ist ein … Deutsch Wikipedia
Shannons Entwicklungssatz — Der Entwicklungssatz von Claude Shannon ist ein Satz über Boolesche Funktionen, der die Shannon Zerlegung verwendet. Er lautet wie folgt: y = f(x1,...,xi,...,xn) … Deutsch Wikipedia
Determinante (Mathematik) — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus einen Skalar zuordnet. Zum Beispiel hat die Matrix die Determinante Formeln für größere Matrizen werden weiter … Deutsch Wikipedia
Laplace-Entwicklung — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus eine Zahl zuordnet. Zum Beispiel hat die Matrix die Determinante … Deutsch Wikipedia
Leibniz-Formel — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus eine Zahl zuordnet. Zum Beispiel hat die Matrix die Determinante … Deutsch Wikipedia
Leibnizformel — In der Linearen Algebra ist die Determinante eine spezielle Funktion, die einer quadratischen Matrix oder einem linearen Endomorphismus eine Zahl zuordnet. Zum Beispiel hat die Matrix die Determinante … Deutsch Wikipedia