Floris Takens

Floris Takens

Floris Takens (* 12. November 1940 in Zaandam; † 20. Juni 2010) war ein niederländischer Mathematiker, der sich mit dynamischen Systemen und Chaostheorie (Bifurkationstheorie, Zeitreihenanalyse) beschäftigte.

Floris Takens 1980 in Warwick

Takens studierte an der Universität Amsterdam und promovierte 1969 bei Nicolaas Kuiper (The minimal number of critical points of a function on a compact manifold and the Ljusternik-Schnirelmann category). Danach war er als Post-Doc am IHES bei Paris, wo er mit David Ruelle, René Thom und Jacob Palis zusammenarbeitete, bei dem er häufig am IMPA (Instituto Matemática Pura e Aplicada) in Rio de Janeiro zu Gast war. Seit 1972 ist er Professor an der Universität Groningen. 1999 emeritierte er, blieb aber weiter wissenschaftlich aktiv und lebte zuletzt in Bedum.

Takens führte mit Ruelle den Begriff des Seltsamen Attraktors ein als möglichen Mechanismus der Turbulenz.[1]. Er gab auch Bedingungen an, unter denen ein Seltsamer Attraktor aus Zeitreihen von Observablen rekonstruiert werden kann.[2].

Takens war Mitglied der Königlich Niederländischen Akademie der Wissenschaften (1991) und der Brasilianischen Akademie der Wissenschaften (1981). 2005 wurde er Ritter vom Orden des Niederländischen Löwen. 1986 war er Invited Speaker auf dem ICM in Berkeley (Homoclinic bifurcations).

Zu seinen Doktoranden zählt Hendrik Broer.

Schriften

  • mit Palis: Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge University Press, 1993

Weblinks

Verweise

  1. Ruelle, Takens '„On the nature of turbulence“, Communications of Mathematical Physics, Bd. 20, 1971, S.167–192
  2. Takens „Detecting strange attractors in turbulence“, in Rand, L.-S.Young (Herausgeber): Dynamical Systems and Turbulence - Warwick 1980, Lecture Notes in Mathematics, Bd. 898, 1981, Springer-Verlag, S.366–381

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Floris Takens — (born November 12, 1940) is a Dutch mathematician known for contributions to the theory of chaotic dynamical systems. Together with David Ruelle he predicted that fluid turbulence could develop through a strange attractor, a term they coined, as… …   Wikipedia

  • Takens' theorem — In mathematics, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of a dynamical system. The reconstruction preserves the properties of the… …   Wikipedia

  • Bogdanov-Takens bifurcation — In bifurcation theory, a field within mathematics, a Bogdanov Takens bifurcation is a well studied example of a bifurcation with co dimension two, meaning that two parameters must be varied for the bifurcation to occur. It is named after R. I.… …   Wikipedia

  • Jacob Palis — Jacob Palis, Jr. (* 15. März 1940 in Uberaba, Minas Gerais) ist ein brasilianischer Mathematiker und Hochschullehrer. Inhaltsverzeichnis 1 Biografie 2 Veröffentlichungen 2.1 Fachaufsätze …   Deutsch Wikipedia

  • David Ruelle (physicien) — Pour les articles homonymes, voir David Ruelle. David Ruelle David Ruelle (Gand, 20 août 1935 ) est physicien mathématicien d origine belge …   Wikipédia en Français

  • David Ruelle — (* 20. August 1935 in Gent, Belgien) ist ein belgisch französischer Physiker und Mathematiker, dessen Hauptarbeitsgebiet die Mathematische Physik ist, insbesondere die mathematische Behandlung der statistischen Mechanik, mathematische …   Deutsch Wikipedia

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

  • David Pierre Ruelle — David Ruelle (physicien) Pour les articles homonymes, voir David Ruelle. David Ruelle David Ruelle (Gand, 20 août 1935 ) est physicien mat …   Wikipédia en Français

  • Attractor — For other uses, see Attractor (disambiguation). Visual representation of a strange attractor An attractor is a set towards which a dynamical system evolves over time. That is, points that get close enough to the attractor remain close even if… …   Wikipedia

  • CHAOS (physique) — Dans le langage usuel, le mot chaos est profondément relié à la notion de désordre total – ce que la Bible nomme le Chaos originel. Le substantif chaos peut qualifier aussi bien un agencement spatial, comme un chaos de rochers, qu’une situation… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”