Orthogonalität (Informatik)

Orthogonalität (Informatik)

In der Informatik ist Orthogonalität ein Entwurfsprinzip, nämlich die freie Kombinierbarkeit unabhängiger Konzepte.

Zum Beispiel galt schon in Algol 60: Wo irgendein Ausdruck eines Typs stehen darf, darf jeder beliebige Ausdruck dieses Typs stehen (beispielsweise ein beliebig komplizierter arithmethischer Ausdruck zur Berechnung eines Indexes zur Bezeichnung eines Feld-Elements). Später in Fortran 66 durfte aber als (ganzzahliger) Index dagegen nur ein Ausdruck der Bauart „Konstante1 mal Variable plus Konstante2“ stehen, wobei zwei der drei Werte (samt zugehörigen Rechenzeichen) fehlen konnten. Das war ein Verstoß gegen das (viel früher formulierte) Entwurfsprinzip der Orthogonalität.

Bei Mikroprozessoren ist Orthogonalität eine bestimmte Eigenschaft des Befehlssatzes, siehe dort.

Bei magnetischen Speichermedien ist Orthogonalität eine Aufzeichnungstechnik, siehe Perpendicular Recording.


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Argument (Informatik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Normal (Geometrie) — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Orthogonal — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Orthogonale — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Orthogonale Abbildung — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Orthogonale Projektion — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Orthographische Projektion — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Rechtwinklig — Die Orthogonalität bezeichnet: in der Mathematik das Konzept des Senkrechtstehens und des rechten Winkels (daher die Benennung orthogonal aus dem Griechischen für rechtwinklig); in der Informatik die freie Kombinierbarkeit unabhängiger Konzepte… …   Deutsch Wikipedia

  • Information-Retrieval — [ˌɪnfɚˈmeɪʃən ɹɪˈtɹiːvəl] (IR) bzw. Informationswiedergewinnung, gelegentlich Informationsbeschaffung, ist ein Fachgebiet, das sich mit computergestütztem inhaltsorientiertem Suchen beschäftigt. Es ist ein Teilgebiet der Informationswissenschaft …   Deutsch Wikipedia

  • Information Retrieval — [ˌɪnfɚˈmeɪʃən ɹɪˈtɹiːvəl] (IR) bzw. Informationsrückgewinnung, gelegentlich ungenau Informationsbeschaffung, ist ein Fachgebiet, das sich mit computergestütztem Suchen nach komplexen Inhalten (also z. B. keine Einzelwörter) beschäftigt und… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”