Dreieck-Stern-Umwandlung

Dreieck-Stern-Umwandlung

Die Stern-Dreieck-Transformation oder Dreieck-Stern-Transformation, auch Kennelly-Theorem (im englischen Delta-Star-Transformation) ist in der Elektrotechnik eine schaltungstechnische Umformung von jeweils drei elektrischen Widerständen die der Schaltungsanalyse von Widerstandsnetzwerken dient. Die Stern-Dreieck-Transformation ist ein Spezialfall der Stern-Polygon-Transformation.

Inhaltsverzeichnis

Allgemeines

Stern-Dreieck-Transformation von Widerständen

Zur Verdeutlichung soll nebenstehende Abbildung dienen: Bei der Stern-Dreieck-Transformation wird die sternförmige (star) rechte Anordnung der Widerstände in eine dreieckförmigen (delta) Widerstandsanordnung, links abgebildet, umgeformt. Die Dreieck-Stern-Transformation ist das Gegenstück dazu und ermöglicht die umgekehrte Umformung. Die elektrischen Anschlusswerte an den eingezeichneten Klemmen a, b und c bleiben dabei exakt gleich. Es werden bei dieser Transformation nur die drei Widerstandswerte durch geeignete Ersatzwerte für die neue Schaltungsanordnung ausgetauscht.

Durch entsprechende Anwendung dieser beiden Transformationen und den Regeln für Parallelschaltung und Reihenschaltung von Widerständen können im Rahmen der Schaltungsanalyse vereinfachte Ersatzwiderstände komplizierter Widerstandsnetzwerke gebildet werden.

Transformationsregeln

Zur Dreieck-Stern-Transformation sind zur Bestimmung der Ersatzwiderstände folgende Berechnungen notwendig:

R_a = \left( \frac{R_{ac}R_{ab}}{R_{ac} + R_{ab} + R_{bc}} \right)
R_b = \left( \frac{R_{ab}R_{bc}}{R_{ac} + R_{ab} + R_{bc}} \right)
R_c = \left( \frac{R_{ac}R_{bc}}{R_{ac} + R_{ab} + R_{bc}} \right)

Für die umgekehrte Stern-Dreieck-Transformation sind zur Bestimmung der Ersatzwiderstände folgende Berechnungen notwendig:

R_{ac} = \left( \frac{R_aR_b + R_bR_c + R_cR_a}{R_b} \right)
R_{ab} = \left( \frac{R_aR_b + R_bR_c + R_cR_a}{R_c} \right)
R_{bc} = \left( \frac{R_aR_b + R_bR_c + R_cR_a}{R_a} \right)

Herleitung der Transformationsregeln

Um zu verstehen, warum die Stern-Dreieck-Transformation funktioniert, ist es ratsam, die Herleitung der Transformationsregeln zu betrachten.

Für unsere Zwecke ist es wichtig, dass das Klemmenverhalten zwischen den jeweiligen Klemmen (a-b, b-c, a-c) nach der Transformation sich nicht verändert.

\frac{U_{dab}}{I_{dab}} = \frac{U_{sab}}{I_{sab}}

Usab ist die Spannung an den Klemmen a-b im Stern und Udab im Dreieck. Analog dazu gelten natürlich auch die übrigen Klemmen b-c und a-c.

Betrachtet man nun die Skizze der Dreiecks- bzw. Sternschaltung, kann man mit den Regeln der Reihenschaltung und Parallelschaltung die Widerstände zwischen den Klemmen bestimmen.

\tilde{R}_{ab} = \frac{1}{\frac{1}{R_{ab}}+\frac{1}{R_{ac}+R_{bc}}}

Bringt man den Doppelbruch auf den gleichen Nenner, kommt man auf folgende Gleichung:

\tilde{R}_{ab} = \frac{R_{ab}R_{ac} + R_{ab}R_{bc}}{R_{ab}+R_{ac}+R_{bc}}

Das gleiche wird auch mit der Sternschaltung gemacht:

\tilde{R}_{ab} = R_a + R_b

und mit der Dreiecksschaltung gleichgesetzt.

\frac{R_{ab}R_{ac} + R_{ab}R_{bc}}{R_{ab}+R_{ac}+R_{bc}} = R_a + R_b

Wiederholt man diese Schritte für die Klemmen b-c und a-c, so erhält man folgende beide Formeln:

\frac{R_{ac}R_{ab} + R_{ac}R_{bc}}{R_{ab}+R_{ac}+R_{bc}} = R_a + R_c
\frac{R_{bc}R_{ab} + R_{bc}R_{ac}}{R_{ab}+R_{ac}+R_{bc}} = R_b + R_c

Löst man dieses Gleichungssystem nach Ra, Rb und Rc auf, erhält man die oben erwähnten Transformationsregeln.

Merkhilfe Vor- und Rücktransformation

Es gibt eine leichte Merk-Regel für die Vor- bzw. Rücktransformation:

\begin{align}
  & \text{Dreieck-Stern-Transformation wird f }\!\!\ddot{\mathrm{u}}\!\!\text{ r  }\Delta \to \text{Y} \\ 
 & \text{Z}_{30}\text{ = }\frac{\text{Z}_{13}\text{* Z}_{23}}{Z_{12}+Z_{23}+Z_{13}}=\frac{\text{Produkt der Anliegerwiderst }\!\!\ddot{\mathrm{a}}\!\!\text{ nde}}{\text{Maschenumlaufwiderstand}} \\ 
 &  \\ 
 & \text{Stern-Dreieck-Transformation wird f }\!\!\ddot{\mathrm{u}}\!\!\text{ r Y}\to \Delta  \\ 
 & Y_{13}=\frac{Y_{10}*Y_{30}}{Y_{10}+Y_{20}+Y_{30}}=\frac{\text{Produkt der Anliegerleitwerte}}{\text{Knotenleitwert}} \\ 
\end{align}

Anwendung in der Wechselstromrechnung

Die Stern-Dreieck-Transformation kann auch in der komplexen Wechselstromrechnung angewendet werden, solange die verwendeten Bauteile wie Kapazitäten, Induktivitäten und Widerstände lineares Verhalten aufweisen. Dabei werden statt der rein ohmschen Widerstände R die komplexen Impedanzen Z in den Gleichungen eingesetzt. Die Transformation erfolgt analog.

Literatur

  • Dieter Nührmann: Das große Werkbuch Elektronik. 6. Auflage. Band 1, Franzis-Verlag, 1994, ISBN 3-7723-6546-9, S. 389. 

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Stern-Dreieck-Umwandlung — Die Stern Dreieck Transformation oder Dreieck Stern Transformation, auch Kennelly Theorem (im englischen Delta Star Transformation) ist in der Elektrotechnik eine schaltungstechnische Umformung von jeweils drei elektrischen Widerständen die der… …   Deutsch Wikipedia

  • Stern-Polygon-Transformation — Sternschaltung Jeder Anschluss ist über einen Widerstand mit dem Nullpunkt verbunden …   Deutsch Wikipedia

  • Eintor — Als einen Zweipol (auch Eintor oder Oneport genannt) bezeichnet man in der Elektrotechnik allgemein ein Bauelement oder eine Schaltung mit zwei „Anschlüssen“ (Klemmen). Die Erweiterung ist der Vierpol (Zweitor). Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Zweipole — Als einen Zweipol (auch Eintor oder Oneport genannt) bezeichnet man in der Elektrotechnik allgemein ein Bauelement oder eine Schaltung mit zwei „Anschlüssen“ (Klemmen). Die Erweiterung ist der Vierpol (Zweitor). Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Anlassverfahren — Als Anlassverfahren bezeichnet man in der Elektrotechnik Methoden, die dazu dienen, den Anzugsstrom von Elektromotoren zu reduzieren. Die einzelnen Anlassverfahren werden entsprechend den Netzverhältnissen, der Höhe des Anlaufstromes und der… …   Deutsch Wikipedia

  • Ersatzstromquelle — In der Theorie linearer elektrischer Netzwerke besagt das Norton Theorem (auch Mayer Norton Theorem), dass jede mögliche Kombination von Spannungsquellen, Stromquellen und Widerständen bezüglich zweier Klemmen elektrisch äquivalent zu einer… …   Deutsch Wikipedia

  • Mayer-Norton-Theorem — In der Theorie linearer elektrischer Netzwerke besagt das Norton Theorem (auch Mayer Norton Theorem), dass jede mögliche Kombination von Spannungsquellen, Stromquellen und Widerständen bezüglich zweier Klemmen elektrisch äquivalent zu einer… …   Deutsch Wikipedia

  • Mayer-Norton-Äquivalent — In der Theorie linearer elektrischer Netzwerke besagt das Norton Theorem (auch Mayer Norton Theorem), dass jede mögliche Kombination von Spannungsquellen, Stromquellen und Widerständen bezüglich zweier Klemmen elektrisch äquivalent zu einer… …   Deutsch Wikipedia

  • Norton-Äquivalent — In der Theorie linearer elektrischer Netzwerke besagt das Norton Theorem (auch Mayer Norton Theorem), dass jede mögliche Kombination von Spannungsquellen, Stromquellen und Widerständen bezüglich zweier Klemmen elektrisch äquivalent zu einer… …   Deutsch Wikipedia

  • Zweipol — Als einen Zweipol (auch Eintor oder Oneport genannt) bezeichnet man in der Elektrotechnik allgemein ein Bauelement oder eine Schaltung mit zwei „Anschlüssen“ (Klemmen). Die Erweiterung ist der Vierpol (Zweitor). Inhaltsverzeichnis 1… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”