Verknüpfung (Mathematik) — In der Mathematik wird Verknüpfung als ein Oberbegriff gebraucht, um neben verschiedenen arithmetischen Rechenoperationen (wie Addition, Subtraktion usw.) auch geometrische Operationen (wie Spiegelung, Drehung u.a.) und weitere (gelegentlich auch … Deutsch Wikipedia
Zweistellige Verknüpfung — Eine zweistellige Verknüpfung (auch binäre Verknüpfung genannt) ist in der Mathematik eine Verknüpfung, die genau zwei Operanden besitzt. Zweistellige Verknüpfungen treten insbesondere in der Algebra sehr häufig auf und man spricht dort abkürzend … Deutsch Wikipedia
Logische Verknüpfung — Logische Verknüpfungen sind Operationen der Booleschen Algebra. Mit Hilfe der logischen Verknüpfungen lassen sich in der Aussagenlogik und Schaltalgebra aus einfacheren Aussagen kompliziertere Aussagen zusammensetzen. Dabei muss der Wahrheitswert … Deutsch Wikipedia
N-stellige Operation — In der Mathematik wird der Begriff Verknüpfung als Oberbegriff für Rechenoperationen (Addition, Subtraktion usw.) und Ähnliches verwendet. Das Wort Verknüpfung wird auch benutzt, um die Hintereinanderausführung von Funktionen zu bezeichnen; siehe … Deutsch Wikipedia
Allgemeine Algebra — Der Begriff algebraische Struktur, missverständlich auch „universelle Algebra“, „allgemeine Algebra“ oder „Algebra“ genannt, bezeichnet ein mathematisches Objekt. Das Synonym allgemeine Algebra bezeichnet gleichzeitig auch den Teilbereich der… … Deutsch Wikipedia
Universelle Algebra — Der Begriff algebraische Struktur, missverständlich auch „universelle Algebra“, „allgemeine Algebra“ oder „Algebra“ genannt, bezeichnet ein mathematisches Objekt. Das Synonym allgemeine Algebra bezeichnet gleichzeitig auch den Teilbereich der… … Deutsch Wikipedia
Algebraische Struktur — Der Begriff algebraische Struktur, missverständlich auch „universelle Algebra“, „allgemeine Algebra“ oder „Algebra“ genannt, bezeichnet ein mathematisches Objekt. Das Synonym allgemeine Algebra bezeichnet gleichzeitig auch den Teilbereich der… … Deutsch Wikipedia
Arität — Der Begriff Stelligkeit (auch: Arität oder Ärität) steht für die Anzahl der Argumente einer Verknüpfung, einer Abbildung bzw. eines Operators. Einstellige Verknüpfungen benötigen nur ein Argument. Beispiel ist etwa die Betragsfunktion (absoluter… … Deutsch Wikipedia
Boole'sche Algebra — In der Mathematik ist eine boolesche Algebra (oder ein boolescher Verband) eine spezielle algebraische Struktur, die die Eigenschaften der logischen Operatoren UND, ODER, NICHT sowie die Eigenschaften der mengentheoretischen Verknüpfungen… … Deutsch Wikipedia
Boole'scher Verband — In der Mathematik ist eine boolesche Algebra (oder ein boolescher Verband) eine spezielle algebraische Struktur, die die Eigenschaften der logischen Operatoren UND, ODER, NICHT sowie die Eigenschaften der mengentheoretischen Verknüpfungen… … Deutsch Wikipedia