Equivariant

Equivariant

Unter einer äquivarianten Abbildung versteht man in der Mathematik eine Abbildung die mit der Wirkung einer Gruppe kommutiert.

Definition: Es seien G eine Gruppe und X,Y Mengen, auf denen eine Linksoperation von G

G\times X\to X,\quad (g,x)\mapsto g\cdot x

definiert ist. Eine Funktion f\colon X\to Y heißt G-äquivariant oder auch kurz äquivariant, wenn gilt:

f(g\cdot x)=g\cdot f(x) für alle g\in G,x\in X.

Dies ist äquivalent dazu, dass das folgende Diagramm kommutiert:

Da die Gruppe auf der Menge der Abbildungen X\to Y via

f\mapsto(x\mapsto gf(g^{-1}x))

operiert und eine Abbildung f genau dann unter dieser Operation fest bleibt, wenn sie äquivariant ist, spricht man häufig auch von G-invarianten Abbildungen.


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • equivariant — adjective Not affected by a specified group action. is equivariant with respect to : for every in , , where and are actions on different sets of the same group …   Wiktionary

  • Equivariant map — In mathematics, an equivariant map is a function between two sets that commutes with the action of a group. Specifically, let G be a group and let X and Y be two associated G sets. A function f : X rarr; Y is said to be equivariant if: f ( g… …   Wikipedia

  • Equivariant cohomology — In mathematics, equivariant cohomology is a theory from algebraic topology which applies to spaces with a group action . It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, given a… …   Wikipedia

  • Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the …   Wikipedia

  • Connection (principal bundle) — This article is about connections on principal bundles. See connection (mathematics) for other types of connections in mathematics. In mathematics, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way …   Wikipedia

  • Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… …   Wikipedia

  • Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) …   Wikipedia

  • Curtis–Hedlund–Lyndon theorem — The Curtis–Hedlund–Lyndon theorem is a mathematical characterization of cellular automata in terms of their symbolic dynamics. It is named after Morton L. Curtis, Gustav A. Hedlund, and Roger Lyndon; in his 1969 paper stating the theorem, Hedlund …   Wikipedia

  • Affine connection — An affine connection on the sphere rolls the affine tangent plane from one point to another. As it does so, the point of contact traces out a curve in the plane: the development. In the branch of mathematics called differential geometry, an… …   Wikipedia

  • Ehresmann connection — In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection which is defined on arbitrary fibre bundles. In particular, it may… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”