Eulersches Kriterium

Eulersches Kriterium

Das Legendre-Symbol ist eine Kurzschreibweise, die in der Zahlentheorie, einem Teilgebiet der Mathematik, verwendet wird. Es ist nach dem französischen Mathematiker Adrien-Marie Legendre benannt und wird wie folgt notiert:

\left(\frac{a}{p}\right) \qquad (a/p) \qquad L(a,p)

Diese drei Notationen geben jeweils an, ob die Zahl a ein Quadratischer Rest modulo p oder Quadratischer Nichtrest modulo p ist. Dabei muss p eine Primzahl sein. Es gilt

\left(\frac{a}{p}\right) = \begin{cases}
1 & \mbox{wenn } a \mbox{ Quadratischer Rest modulo } p \mbox{ ist} \\
-1 & \mbox{wenn } a \mbox{ Quadratischer Nichtrest modulo } p \mbox{ ist} \\
0 & \mbox{wenn } a \mbox{ ein Vielfaches von } p \mbox{ ist}
\end{cases}

Das Legendre-Symbol ist ein Spezialfall des Jacobi-Symbols, das die gleiche Schreibweise hat.

Das Eulersche Kriterium gibt an, wie sich das Legendre-Symbol für alle Primzahlen p außer der 2 berechnen lässt:

\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod p

Die Zahl 2 wird durch die Formel nicht berücksichtigt, da gilt

-1 \equiv 1 \pmod 2

Beispiele

4 ist ein quadratischer Rest zu modulo 7:
\left(\frac{4}{7}\right) \equiv 4^{\frac{7-1}{2}}= 4^3 \equiv 1\mod7
5 ist kein quadratischer Rest zu modulo 7:
\left(\frac{5}{7}\right) \equiv 5^{\frac{7-1}{2}} = 5^3 \equiv 6 \equiv -1 \mod 7
14 ist durch 7 teilbar:
\left(\frac{14}{7}\right) \equiv 14^{\frac{7-1}{2}} = 14^3 \equiv 0 \mod7

Rechenregeln

Das Quadratische Reziprozitätsgesetz macht wichtige Aussagen über das Rechnen mit dem Legendre-Symbol.

Es seien nun a, b \in \Z und p eine Primzahl mit p \nmid 2ab. Dann gelten folgende Rechenregeln:

  • a \equiv b \pmod p \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)
  • \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right) = \left(\frac{a\cdot b}{p}\right)
  • \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0

Die besondere Stellung der Zahl 3

Die Zahl 3 liefert bei der Ganzzahldivision als Modulo die Werte 0, 1 und -1 zurück. Dies entspricht genau den Werten des Legendre-Symbols. Es gilt also:

\left(\frac{a}{3}\right) = a^{\frac{3-1}{2}}\ \operatorname{mod}\ 3 = a \ \operatorname{mod}\ 3

Wenn man also ein Legendre-Symbol in Legendre-Symbole der Form \left(\frac{a}{3}\right) zerlegen kann, so lässt sich der Wert, den das Legendre-Symbol zurückliefert, leicht berechnen.


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Eulersche Pseudoprimzahl — Eine ungerade natürliche Zahl n wird eulersche Pseudoprimzahl genannt, wenn sie eine zusammengesetzte Zahl ist, die sich in Bezug auf eine zu ihr teilerfremde Basis a wie eine Primzahl verhält: wenn nämlich die Kongruenz erfüllt ist. Anders… …   Deutsch Wikipedia

  • Quadratische-Reste-Problem — Der quadratische Rest ist ein Begriff aus dem mathematischen Teilgebiet Zahlentheorie. Eine Zahl a ist ein quadratischer Rest bezüglich eines Moduls m, wenn sie zu m teilerfremd ist und es eine Zahl x gibt, für die die Kongruenz gilt. Für den… …   Deutsch Wikipedia

  • Quadratischer Nichtrest — Der quadratische Rest ist ein Begriff aus dem mathematischen Teilgebiet Zahlentheorie. Eine Zahl a ist ein quadratischer Rest bezüglich eines Moduls m, wenn sie zu m teilerfremd ist und es eine Zahl x gibt, für die die Kongruenz gilt. Für den… …   Deutsch Wikipedia

  • Regelungstechnik — ist eine Ingenieurwissenschaft, die alle in der Technik vorkommenden Regelungs Vorgänge behandelt. Sie tangiert oder ist Bestandteil zahlreicher anderer Wissenschaften wie Kybernetik, Robotik, Automatisierungstechnik, Prozessinformatik,… …   Deutsch Wikipedia

  • Regelkreis — Blockschaltbild eines einfachen Standardregelkreises, bestehend aus der Regelstrecke, dem Regler und einer negativen Rückkopplung der Regelgröße y (auch Istwert). Die Regelgröße y wird mit der Führungsgröße (Sollwert) w verglichen. Die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”