- Filamentgleittheorie
-
Unter einer Muskelkontraktion versteht man die aktive Verkürzung eines Muskels. Ein Muskel ist ein Teil des Gewebes eines Menschen (Tieres), das als ganzes beweglich meist einem Knochen oder anderen Muskeln aufliegt (Verschiebbarkeit durch Schichten von lockerem Bindegewebe, Faszien und Logen) und durch seine Verbindungen mit Sehnen in der Lage ist, Gliedmaßen, innere Körperbezirke (Bauchpresse beim Husten, Miktion, Defäkation, Geburtsvorgang usw.; Atmungsbewegung) zu bewegen und damit letztlich dem Individuum ermöglicht, Kräfte auf seine Umwelt auszuüben (z. B. einen Nagel in die Wand schlagen) und sich selbst fortzubewegen (ortsverändernde Bewegung).
Inhaltsverzeichnis
Muskelkontraktion im Kontext des Bewegungsapparates der Extremitäten
Um eine Bewegung von Körperteilen gegen Widerstand, z. B. das Anheben eines Beines, welches ein erhebliches Eigengewicht aufweist, oder gar das Abbremsen aus dem Lauf oder Sprung zu ermöglichen, muss der Muskel über den Sehnenapparat Kraft auf die Angriffspunkte an den Knochen ausüben können. Hierzu ist ein durchgängiger Kraftschluss erforderlich, der alle Teile der Sehnen und des Muskels einbeziehen muss.
Dieser Kraftschluss muss nach dem Prinzip „Die Kette ist so stark wie ihr schwächstes Glied“ sämtliche Elemente sowohl der Grob- als auch der Feinstruktur des Muskelaufbaus umfassen. Dies beinhaltet also die Ebene des Muskels als ganzem Gewebeteils, der Muskelfaser, der Myofibrille und in longitudinaler Gliederung des Sarkomers als kleinstem Abschnitt der Myofibrille. An den Übergängen Muskelfaser/Muskelfaser (Endomysium), Fibrille/Fibrille, Endomysium/Sehne, Perimysium/Sehne usw. bis zu den Übergängen der Sarkomere innerhalb der Fibrille müssen die Strukturen die auftretenden Kräfte kontrollieren und teilweise umleiten (Scherkräfte) können. Eine Muskelfaser kann Kräfte bis zu 40 N/cm² aufbringen und ist passiv bis zu 100 N/cm² belastbar.
Auffällig ist, dass von den die Sehnenkräfte übertragenden Strukturen insbesondere das Endomysium zur Übertragung beiträgt, indem es direkt mit den einstrahlenden Sehnenenden verbunden ist. Da das Endomysium über Myotendinöse Verbindungen die auf die Enden der Aktinfilamente (s. u.) ausgeübten Kräfte direkt aufnimmt, ist der Kraftschluss hier gewährleistet.
Neben der Kraftübertragung in Richtung der Kontraktion ist die Verhinderung bzw. Umleitung von Scherkräften eine wichtige Aufgabe, die der Muskel durch Mechanismen der mechanischen Verbindung, aber auch der Steuerung der Kontraktion der Muskelfaserzellen erfüllt. Hier kommen den transversalen Strukturen, die den Zusammenhalt der Fibrillen zu Fasern und wiederum der Fasern zu Muskelsträngen gewährleisten, große Bedeutung zu. In mechanischer Hinsicht sind hier die Costamere und die Desmin-Filamente zu nennen, in Hinsicht auf die Steuerung und damit Reduzierung von Scherkräften die Synchronisation der Arbeit der Sarkomere und damit der Fibrillen durch die schnelle Weiterleitung des von den Endplatten erzeugten Aktionspotentials in longitudinaler und transversaler Richtung über die sog. Triaden. Hierbei handelt es sich um eine die Fibrillen um fassenden, transversalen Struktur aus je zwei endständigen Zysternen des Sarkoplasmatischen Retikulums und einem transversalen Tubulus, der morphologisch eine Einstülpung der Plasmamembran darstellt und das Aktionspotential sowohl in der Länge als auch in die Tiefe überträgt. Dort sorgt er für die Öffnung spezifischer Ca-Kationen-Kanäle, die die Auslösung des kontraktilen Mechanismus bewirken.
Beschreibung der Kontraktion der Muskelfaser
- → Hauptartikel: Kontraktiler Mechanismus
Die Kontraktion ist ein Vorgang, der durch Änderungen der chemischen Konfiguration der Muskelprotein-Moleküle bewirkt wird. Die Konfigurationsänderung (d. h. Formänderung, man spricht auch von „Abwinkelung“) führt zu sogenannten „Ruderbewegungen“ der „Köpfe“ dieser Moleküle (Myosin), wodurch die Aktinfilamente an den Myosinfilamenten vorbeigezogen werden. Ausgelöst wird die Kontraktion durch einen Nervenimpuls. Hört der Nerv auf, den Muskel mit Impulsen zu versorgen, erschlafft der Muskel, man spricht dann von Muskelrelaxation.
Kontraktionsarten
Je nach Kraft- (Spannungs-) bzw. Längenänderung des Muskels lassen sich mehrere Arten der Kontraktion unterscheiden:
- isotonisch („gleichgespannt“): Der Muskel verkürzt sich ohne Kraftänderung.
- isometrisch („gleichen Maßes“): Die Kraft erhöht sich bei gleicher Länge des Muskels (haltend-statisch). Im physikalischen Sinne wird keine Arbeit geleistet, da der zurückgelegte Weg gleich null ist.
- auxotonisch („verschiedengespannt“): Sowohl Kraft als auch Länge ändern sich. Das ist der häufigste Kontraktionstyp.
Aus diesen elementaren Arten der Kontraktion lassen sich komplexere Kontraktionsformen zusammensetzen. Sie werden im alltäglichen Leben am häufigsten benutzt. Das sind z. B.
- die Unterstützungszuckung: erst isometrische, dann isotonische Kontraktion. Beispiel: Anheben eines Gewichtes vom Boden und anschließendes Anwinkeln des Unterarms.
- die Anschlagszuckung: erst isotonische, dann isometrische Kontraktion. Beispiel: Kaubewegung, Ohrfeige.
Hinsichtlich der resultierenden Längenänderung des Muskels und der Geschwindigkeit, mit der diese erfolgt, lassen sich Kontraktionen z. B. folgendermaßen charakterisieren:
- isokinetisch („gleich schnell“): Der Widerstand wird mit einer gleich bleibenden Geschwindigkeit überwunden.
- konzentrisch: der Muskel überwindet den Widerstand und wird dadurch kürzer(positiv-dynamisch, überwindend). Die intramuskuläre Spannung ändert sich, und die Muskeln verkürzen sich.
- exzentrisch: ob gewollt oder nicht, der Widerstand ist größer als die Spannung im Muskel, dadurch wird der Muskel gedehnt (negativ-dynamisch, nachgebend). Es kommt zu Spannungsänderungen und Verlängerung/Dehnung der Muskeln. Diese Form der Belastung bzw. Kontraktion tritt zum Beispiel beim Bergabgehen in der vorderen Oberschenkelmuskulatur (quadriceps femoris) auf.
Siehe auch
- Kontraktiler Mechanismus (Muskelkontraktion)
- Theorie der gleitenden Filamente
Wikimedia Foundation.