Färbung von Graphen

Färbung von Graphen
Darstellung einer kartographischen Färbung als Graph

Eine Färbung eines ungerichteten Graphen ordnet jedem Knoten bzw. jeder Kante im Graphen eine Farbe zu.

In der Graphentheorie beschäftigt man sich meist nur mit sogenannten „zulässigen“ oder „gültigen“ Färbungen (siehe unten), und versucht, Algorithmen zu entwickeln, die für einen vorgegebenen Graphen eine gültige Färbung mit möglichst wenig Farben finden. Probleme aus der diskreten Mathematik, aber auch außermathematische Fragestellungen lassen sich manchmal in ein Färbungsproblem übersetzen, daher ist die Existenz oder Nichtexistenz solcher Algorithmen auch außerhalb der Graphentheorie von Interesse.

Inhaltsverzeichnis

Knotenfärbungen

Ist G = (V,E) ein ungerichteter Graph ohne Mehrfachkanten und f eine Abbildung von V in die Menge der natürlichen Zahlen \mathbb{N}_0, so nennt man f eine Knotenfärbung von G. Man nennt f gültig oder zulässig, falls für je zwei beliebige benachbarte Knoten v1 und v2 gilt f(v1)≠f(v2) und sagt G ist k-knotenfärbbar, falls es eine gültige Knotenfärbung von G gibt, so dass für alle v aus V gilt: f(v)<k. Das kleinste k, für das G k-knotenfärbbar ist, nennt man die chromatische Zahl oder die Knotenfärbungszahl des Graphen G und wird meist mit χ(G) bezeichnet.

Eine zulässige Knotenfärbung eines Graphen ist eine Partition seiner Knotenmenge in unabhängige Mengen (eine Teilmenge der Knotenmenge V eines Graphen heißt unabhängig, falls sie keine zwei benachbarten Knoten enthält).

Kantenfärbungen

Ist G=(V,E) ein ungerichteter Graph ohne Mehrfachkanten und f eine Abbildung von E in die Menge der natürlichen Zahlen \mathbb{N}_0, so nennt man f eine Kantenfärbung von G. Man nennt f gültig oder zulässig, falls für je zwei beliebige benachbarte Kanten e1 und e2 gilt f(e1)≠f(e2) und sagt G ist k-kantenfärbbar, falls es eine gültige Kantenfärbung von G gibt, so dass für alle e aus E gilt: f(e)<k. Das kleinste k, für das G k-kantenfärbbar ist, nennt man den chromatischer Index oder die Kantenfärbungszahl des Graphen G und wird meist mit χ'(G) bezeichnet.

Die Kantenfärbung eines Graphen G lässt sich als Knotenfärbung des Kantengraphen L(G) betrachten. Daraus folgt dass χ'(G) = χ(L(G)).

Der Satz von Vizing besagt, dass der chromatische Index eines Graphen mindestens so groß wie sein Maximalgrad aber höchstens eins größer als dieser ist, also formal:

GRAD_{max}(G) \leq \textit{CHROMATISCHERINDEX}(G) \leq GRAD_{max}(G) + 1

Obwohl der Maximalgrad leicht zu bestimmen ist und der chromatische Index nur einen von zwei möglichen Werten annehmen kann, ist das Problem, für einen gegebenen Graphen genau diesen einen Wert zu bestimmen, ebenfalls NP-schwer.

Der allgemeine Fall

Die Bestimmung der chromatischen Zahl eines Graphen ist NP-schwer, das heißt, dass es – aus Sicht der Komplexitätstheorie – vermutlich keinen Algorithmus gibt, der dieses Problem effizient löst.

Der zur Zeit praktisch beste Algorithmus beruht auf einem Spalten-Generierungs-Ansatz (siehe Literatur). Weiterhin gibt es viele Färbungsheuristiken, die nach bestimmten Methoden gute Färbungen suchen und somit im Erfolgsfall eine obere Schranke für die chromatische Zahl liefern.

Spezialfälle

Der Vier-Farben-Satz besagt, dass die chromatische Zahl eines planaren Graphen höchstens 4 ist. Trotzdem ist auch für planare Graphen das Bestimmen der chromatischen Zahl NP-schwer.

Das Entscheidungsproblem, ob ein gegebener Graph bipartit ist, besitzt lineare Zeitkomplexität, und ist zum Beispiel mit Tiefensuche lösbar. (Bipartite Graphen sind genau die Graphen mit chromatischer Zahl höchstens 2.)

Für perfekte Graphen existieren Polynomialzeitalgorithmen zur Berechnung der chromatischen Zahl.

Weitere Sätze

Der Greedy-Algorithmus liefert als obere Schranke für die chromatische Zahl eines Graphen den Maximalgrad des Graphen plus 1. Beispiele, die zeigen, dass diese Abschätzung bestmöglich ist, sind Kreise ungerader Länge und vollständige Graphen. Der Satz von Brooks zeigt aber, dass dies auch die einzigen Beispiele sind. Für jeden zusammenhängenden Graphen, der keine Kreise ungerader Länge enthält oder nicht vollständig ist, ist seine chromatische Zahl stets kleiner oder gleich dem Maximalgrad des Graphen.

Anwendungen

Stundenplanprobleme lassen sich als Graphfärbungsprobleme formulieren: Die Knoten des Graphen sind dabei die zu platzierenden Veranstaltungen, und eine Kante wird zwischen zwei Veranstaltungen eingefügt, die nicht gleichzeitig stattfinden können (in der Schule wären das z. B. Stunden, die von demselben Lehrer unterrichtet werden sowie Stunden in derselben Klasse). Die möglichen Farben entsprechen den zuteilbaren Zeitfenstern.

In gleicher Weise können beispielsweise Register-Zuweisungs-Probleme in Prozessoren, Bandbreiten-Zuweisung-Probleme und auch viele Probleme aus der Mathematik als Graphenfärbungsprobleme formuliert werden.

Chromatisches Polynom

Siehe dazu: Chromatisches Polynom

Literatur


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Typen von Graphen in der Graphentheorie — Ein Graph besteht in der Graphentheorie anschaulich aus einer Menge von Punkten, zwischen denen Linien verlaufen. Die Punkte nennt man Knoten oder Ecken, die Linien nennt man meist Kanten, manchmal auch Bögen. Auf die Form der Knoten und Kanten… …   Deutsch Wikipedia

  • Färbung (Graphentheorie) — Darstellung einer kartographischen Färbung als Graph Eine Färbung eines ungerichteten Graphen ordnet jedem Knoten bzw. jeder Kante im Graphen eine Farbe zu. In der Graphentheorie beschäftigt man sich meist nur mit sogenannten „zulässigen“ oder… …   Deutsch Wikipedia

  • Bipartite Graphen — bipartiter Graph allgemeiner: perfekter Graph k partiter Graph Beispiele: Vollständig bipartite Graphen Bäume …   Deutsch Wikipedia

  • Satz von Schur — Der Satz von Schur liefert in der diskreten Mathematik Aussagen, wie groß eine Zahlenmenge [1,s(r)] sein muss, damit für jede beliebige r Färbung dieser stets eine einfarbige Lösung existiert. Dieser Satz war ursprünglich ein Hilfssatz in einer… …   Deutsch Wikipedia

  • Satz von Ringel-Youngs — Die Satz von Ringel Youngs, auch Heawood Vermutung genannt, gibt in der Graphentheorie eine obere Schranke für die Anzahl der Farben, die für die Färbung einer Fläche eines Geschlechts hinreichend ist. 1968 wurde von Gerhard Ringel und J. W. T.… …   Deutsch Wikipedia

  • Gültige Färbung — Darstellung einer kartographischen Färbung als Graph Eine Färbung eines ungerichteten Graphen ordnet jedem Knoten bzw. jeder Kante im Graphen eine Farbe zu. In der Graphentheorie beschäftigt man sich meist nur mit sogenannten „zulässigen“ oder… …   Deutsch Wikipedia

  • Satz von Ramsey — Der Satz von Ramsey (nach Frank Plumpton Ramsey) beantwortet die Frage, ob in einem Graphen zwingend gewisse Unterstrukturen auftreten. Genauer werden gefärbte vollständige Graphen auf das Auftreten monochromatischer Teilgraphen hin betrachtet,… …   Deutsch Wikipedia

  • Graphentheorie — Ungerichteter Graph mit sechs Knoten. Die Graphentheorie ist ein Teilgebiet der Mathematik, das die Eigenschaften von Graphen und ihre Beziehungen zueinander untersucht. Dadurch, dass einerseits viele algorithmische Probleme auf Graphen… …   Deutsch Wikipedia

  • 3COLOR — Das Dreifarbenproblem ist ein Entscheidungsproblem aus der Graphentheorie. Gefragt ist, ob die Knoten eines schlichten Graphen so mit drei Farben einfärbbar sind, dass zueinander benachbarte Knoten unterschiedliche Farben haben. Das Problem ist… …   Deutsch Wikipedia

  • Claude Berge — (* 5. Juni 1926; † 30. Juni 2002) war ein französischer Mathematiker, der sich mit Kombinatorik beschäftigte. Außerdem war er Schriftsteller und Bildhauer. Berge war am Centre d Analyse et de Mathématique Sociales (CAMS) der École des hautes… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”