High Speed Imager

High Speed Imager

Hochgeschwindigkeitskameras dienen dazu, Vorgänge aufzunehmen, die entweder extrem kurzzeitig sind oder extrem schnell ablaufen oder auch beide Bedingungen erfüllen (Zeitlupe). Hochgeschwindigkeitskameras sind überall dort im Einsatz, wo Bewegungen oder Materialverhalten analysiert werden müssen, die für das menschliche Auge oder herkömmliche Kameras nicht zu erfassen sind. Normale Kinokameras belichten 24 Bilder pro Sekunde, bei Fernsehfilmen benutzt man entweder 25 (PAL, SECAM) oder 29,97 (NTSC). Durch Hochgeschwindigkeitskamera kann eine Sekunde Aufnahmezeit auf mehrere Minuten Wiedergabezeit ausgedehnt werden.

Es existieren drei unterschiedliche Typen von Hochgeschwindigkeitskameras:

Inhaltsverzeichnis

Analoge Verfahren

  • Hochgeschwindigkeits-Filmkameras: 360 fps
  • Drehprismenkameras: 10.000 fps. Solche Hochgeschwindigkeitskameras belichten bis zu 140.000 Bilder pro Sekunde, indem sie den Film über ein Prisma laufen lassen, statt einen Verschluss zu verwenden.
  • Trommelkameras: 20.000 fps
  • Drehspiegelkameras: 200.000 fps

Digitale Verfahren

Verwendet werden CCD und CMOS Sensoren. Heutige hochauflösende Kamerasysteme verfügen meist über CMOS-Sensoren, die hohe Auflösung bei geringer Größe und bei geringer Leistungsaufnahme und Wärmeentwicklung ermöglichen. Fast jede digitale Hochgeschwindigkeitskamera kann die volle Auflösung nur bis zu einer bestimmten Aufnahmegeschwindigkeit liefern, in der Regel 500 oder 1000 Bilder pro Sekunde, neuere Kamerasysteme bis zu 5400 Bilder pro Sekunde. Ausnahme bildet hier der IS-CCD Sensor, der seine volle Auflösung bis zu einer Geschwindigkeit von 1.000.000 fps beibehält.

Wird eine bestimmte Aufnahmegeschwindigkeit überschritten, muss in der Regel die Auflösung reduziert werden, denn der Mikroprozessor der Kamera kann immer nur dieselbe Datenmenge pro Zeit bewältigen. Dabei sind mit heutigen HS-Kameras (Highspeed-Video) Frameraten von bis zu 1.000.000 Bildern pro Sekunde möglich.Die Auflösung beträgt dann abhängig vom Kamerahersteller bestenfalls 312 x 260 Pixel. Digitale Hochgeschwindigkeitskameras haben in der Regel einen beschränkten internen Speicher, in dem (in Abhängigkeit von Auflösung und Aufnahmegeschwindigkeit) nur eine begrenzte Anzahl Bilder bzw. Frames gespeichert werden können (100 Frames im Falle des IS-CCD Sensors). "Langzeitrecorder-Systeme" umgehen diese Begrenzung, in dem sie die Daten direkt auf externen Speichermedien ablegen.

In der Aufprallanalyse ist zurzeit eine Auflösung von 1024 x 768 Pixeln (Bildpunkten) üblich. Neuere hochauflösende Kamerasysteme erreichen eine Auflösung von 1536 x 1024 Pixeln oder 1504 x 1128 Pixeln. Zurzeit ist es nicht möglich diese hohe Auflösung (1504 x 1128 px) gemeinsam mit sehr hohen Geschwindigkeiten (1M fps) und einer hohen Bildanzahl (100 Bilder) zu realisieren.

Speicherung bei digitalen Hochgeschwindigkeitskameras

Hochgeschwindigkeitskameras verfügen in der Regel über einen internen oder externen Ringspeicher. Wird eine Kamera gestartet, so nimmt diese unentwegt mit den eingestellten Parametern auf, bis der Kamera über ein Trigger-Signal mitgeteilt wird, dass der aufzunehmende Vorgang nun stattgefunden hat oder zeitnah stattfinden wird. Nach Erhalt des Trigger-Signals wird der noch evtl. verbleibende Ringspeicher mit Aufnahmen gefüllt und der Aufnahmevorgang beendet. Im Anschluss stehen die Bilddaten des Ringspeichers für weitere Zwecke zur Verfügung.

Bei Langzeitrecord-Systemen hingegen werden die Daten nicht in der oben beschriebenen Ringspeicher-Methode, sondern sequentiell auf externe Speichermedien geschrieben. Somit ist bei diesen die Aufnahmekapazität direkt abhängig von der Größe des Speichermediums. Üblicherweise wird hier ein RAID Festplattensystem verwendet das je nach Datenmenge / Sekunde zwischen einige Minuten und einigen Stunden Aufzeichnungsdauer ermöglicht.

Zusätzlich zu den elektrisch eingespeisten Trigger-Signalen, gibt es bei modernen Kameras auch die Möglichkeit, ein Trigger-Signal über das aufgenommene Bild oder über die Position der Kamera einzuspeisen. Einige Hochgeschwindigkeitskameras verfügen über Bild-Trigger. Bei diesen Kameras wird ein Trigger-Signal durch bestimmte Aktionen im Bild ausgelöst. Die Bewegung von Objekten im Bild wird als Aktion durch die Firmware (Software) der Kamera registriert und löst die eigentliche Aufnahme aus (Trigger). Andere Kamerasysteme verfügen aber auch über GPS-Empfänger, die eine Aufnahme auslösen, wenn die Kamera sich an einer bestimmten Position befindet oder diese passiert.

Nach der erfolgreichen Aufnahme werden die aufgenommenen Daten weiterverarbeitet und archiviert. Die Kamerasoftware liest die einzelnen Bilder aus der Kamera aus und fügt diese auf Wunsch zu einem Video zusammen.

Elektronische Kameras

  • Bildwandlerkameras: 20 Mio. fps
  • High-Speed-Framing-Kameras: 500 Mio. fps. Mit Hilfe von hochspezialisierten High-Speed-Framing-Kameras kann man Frequenzen bis zu 500 Millionen Bilder pro Sekunde erreichen. Eine volle Sekunde wird hier jedoch nicht aufgenommen; die aufzunehmenden Vorgänge laufen meist innerhalb weniger Mikrosekunden ab.

Eindimensionale Aufnahmen sind mit Streakkameras möglich.

Auslöser

Ein Problem bei Aufnahmen mit Hochgeschwindigkeitskameras liegt darin, die Aufnahme im richtigen Moment zu starten, da die zu filmenden Vorgänge sehr kurz und oft schon vorbei sind, ehe sie mit dem menschlichen Auge wahrgenommen werden. Jede Hochgeschwindigkeitskamera verfügt daher über mindestens eine so genannte Trigger-Möglichkeit. Meistens ist dies ein extern eingespeistes elektrisches Signal

Belichtung

Ein wichtiger Faktor bei allen Kameraaufnahmen und Fotografien ist die Belichtung. Im Bereich der Hochgeschwindigkeitsaufnahmen ist sie sogar noch wichtiger als in anderen Bereichen der Bilderstellung. Während die handelsüblichen Fotoapparate und Camcorder mit Belichtungszeiten im Millisekunden-Bereich [ms] arbeiten, liegen die Belichtungszeiten von Hochgeschwindigkeitskameras je nach Aufnahmegeschwindigkeit im Mikrosekunden-Bereich. Die Belichtungszeit für jedes Einzelbild wird also sehr kurz (≤ 1/15.000 s), weshalb mit steigender Bildzahl immer stärkere Lichtquellen benötigt werden. Da derart hohe Bildfrequenzen meist bei extrem kurzen Vorgängen verwendet werden, kommen oft starke Blitzgeräte oder sehr starke Dauer-Leuchtquellen (mehrere Kilowatt Lichtleistung) zum Einsatz. Generell gilt, dass Hochgeschwindigkeitskameras wegen der sehr kurzen Belichtungszeiten viel Licht brauchen, um eine sinnvolle Helligkeitsdynamik und Schärfentiefe zu erreichen. Zu diesem Zweck werden die zu filmenden Objekte sehr stark ausgeleuchtet. Mitunter ist es so, dass die richtige Ausleuchtung der zu filmenden Objekte mehr Aufwand verursacht als der tatsächliche Filmvorgang und die anschließende Bildbearbeitung. Auch führt das intensive Licht für Hochgeschwindigkeitsaufnahmen oft dazu, dass die zu filmenden Objekte während des Filmvorganges derart heiß werden, dass sie schmelzen oder in Brand geraten können.

Zu erwähnen ist im Zusammenhang mit der Belichtung auch, dass schwarzweiß (monochrom) funktionierende Hochgeschwindigkeitskameras bei gleicher Belichtungszeit bis zu drei Mal empfindlicher sind als Farbkameras gleichen Typs. Somit müssen bei Farbkameras teilweise um den Faktor drei längere Belichtungszeiten oder entsprechend stärkere Lichtquellen verwendet werden als bei Schwarzweißkameras.

Beispiel Crashtests: Besonders bei Crashtests der Automobilindustrie beim Einsatz von Crashtest-Dummys besteht immer die Gefahr, dass die Vinylhaut der Dummys bei langen Aufnahmevorgängen schmilzt. Ein weiteres Risiko ist die Erhitzung der Fahrzeugteile und der Fahrzeugkarosserien. Wird ein zu testendes Fahrzeug zu lange dem intensiven Licht ausgesetzt, erhitzt es sich teilweise auf über 100 °C.

Anwendungen

Anwendung finden diese Kameras unter anderen in folgenden Bereichen:

  • in der naturwissenschaftlichen Grundlagenforschung, z. B. um Theorien über Turbulenzen empirisch zu überprüfen, Particle Image Velocimetry (PIV)
  • in der Automobilindustrie, z. B. bei Crashtests
  • in der Wehrtechnik, z. B. um Verformung von Material unter Beschuss zu analysieren
  • in der Medizin, z. B. um Stimmlippenschwingungen aufzuzeichnen
  • in Produktionsstraßen, z. B. bei der Fehlersuche bei maschinellen Verpackungsvorgängen
  • im Maschinen- und Apparatebau
  • in der Schweißtechnik, Laserschweißen
  • bei der Laborsimulation von Meteoriten-, Mikrometeoriten- oder Weltraummüll-Impaktvorgängen auf Planeten oder Satelliten

Hochgeschwindigkeitskamera-Aufnahmen von Crashtests

In der Automobilindustrie werden Hochgeschwindigkeitskameras für die Analyse von Crashtests eingesetzt. Hier werden zumeist sogenannte beschleunigungsfeste Kameras (crash-fest oder HighG-fest) verwendet, die aufgrund ihrer Robustheit gegenüber starken Schlägen und Erschütterungen auch onboard (im Fahrzeug oder mit im Versuchsaufbau) ihre Aufgaben erfüllen können.

Die Automobilindustrie verwendet inzwischen vorwiegend digitale Kamerasysteme, aber auch Hochgeschwindigkeits-Filmkameras sind noch vereinzelt im Einsatz. Im Bereich der Crash-Analyse werden die Hochgeschwindigkeitsaufnahmen mit 500 oder 1000 Bildern pro Sekunde durchgeführt, wobei 1000 Bilder pro Sekunde Standard sind. Bei einer Aufnahmegeschwindigkeit von 1000 Bildern pro Sekunde ist der Abstand zwischen zwei aufeinander folgenden Bildern (Periodendauer) 1 Millisekunde lang.

Höhere Aufnahmegeschwindigkeiten als 1000 Bilder pro Sekunde sind in Standard-Crashtests nur selten erforderlich und werden meist nur für die Aufnahme von Airbagausfaltungen oder noch schnelleren Vorgängen verwendet. Da der Speicher einer digitalen Hochgeschwindigkeitskamera begrenzt ist, kann eine solche Kamera auch nur begrenzt lange aufnehmen. Wenn eine Kamera z. B. 1500 Bilder in einer bestimmten Bildauflösung speichern kann, ist eine Aufnahme mit 1000 Bildern pro Sekunde nach 1,5 Sekunden beendet. Würde man eine Aufnahme mit 10000 Bildern pro Sekunde durchführen, ist die Aufnahme bereits nach 150 Millisekunden beendet. Will man einen Vorgang über längere Zeit hinweg aufnehmen und analysieren, ergeben sich somit bei sehr schnellen Vorgängen und Aufnahmegeschwindigkeiten große Probleme wenn eine Kamera mit dem klassischen Sensor-->RAM Speicherprinzip verwendet wird. Moderne Langzeitsysteme schaffen hier Abhilfe.

Mechanische Belastbarkeit von Hochgeschwindigkeitskameras in Crashtests

In Crashtests der Automobilindustrie werden an Hochgeschwindigkeitskameras hohe Anforderungen bezüglich der mechanischen Belastung gestellt. Dazu werden crash-feste Hochgeschwindigkeitskameras eingesetzt, welche eine hohe Beschleunigung von bis zu 100 g (das 100fache der Erdfallbeschleunigung) in alle Achsen über einen Zeitraum von bis zu 25 ms aushalten können. Zudem müssen diese beschleunigungsfesten (crash-festen) Kameras eine solide Anbindungsmöglichkeit an die Umgebungsstrukturen bieten. Natürlich muss eine crash-feste Hochgeschwindigkeitskamera auch ein gegen Schläge robustes Gehäuse aufweisen. Zudem spielen chemische Beständigkeit des Gehäuses und Schutz vor Staub und anderen Fremdkörpern eine wichtige Rolle. Auch die zu verwendenden Objektive müssen hohe Belastungen aushalten können. Sehr wichtig ist auch eine Unempfindlichkeit gegenüber der Umgebungstemperatur und der umgebenden Luftfeuchtigkeit. Die meisten digitalen Hochgeschwindigkeitskameras haben einen Temperatursensor im Gehäuse, der die Kamera zum Selbstschutz ausschaltet, wenn diese zu heiß wird.

Synchronisation mehrerer Hochgeschwindigkeitskameras/3D-Aufnahmen

In zunehmendem Maße werden auch Unfallsituationen einer 3D-Analyse unterzogen. Um eine 3D-Hochgeschwindigkeitsaufnahme zu erstellen, werden zwei oder mehr Hochgeschwindigkeitskameras gleichen Typs (der gleiche Kameratyp garantiert gleiche Verarbeitungsgeschwindigkeit der Synchronisationssignale) aus mehreren Perspektiven auf das zu filmende Objekt bzw. den zu filmenden Vorgang gerichtet. Der genannte Vorgang wird mit allen Kameras synchron aufgenommen. Anschließend wird mit einer grafikverarbeitenden Software am Computer aus den mehreren 2D-Aufnahmen eine 3D-Aufnahme errechnet. Für die Berechnung der 3D-Aufnahme ist das synchrone Ablaufen aller beteiligten Kamerasysteme unerlässlich. Selbst Abweichungen der Synchronität im Bereich von wenigen Mikrosekunden [µs] können das Ergebnis der 3D-Aufnahme stark verfälschen.

Von modernen Hochgeschwindigkeitskameras wird, beispielsweise in der Crash-Analyse, neben der hohen Aufnahmegeschwindigkeit auch eine hohe Bildsynchronität zwischen mehreren Kameras erwartet. Für eine eindeutige Analyse eines Vorganges muss der Zusammenstoß aus mehreren Perspektiven festgehalten werden. Synchrone Aufnahme aus verschiedenen Perspektiven ist daher unerlässlich. Daher haben alle modernen Hochgeschwindigkeitskameras aus der Crash-Analyse vielfältige Synchronisationsmöglichkeiten - zum Beispiel über einen externen Frequenzgenerator, welcher alle Kameras gleichzeitig mit einem hochstabilen Signal versorgt. Eine weitere Möglichkeit ist die Nutzung des GPS-Zeitsignals als gemeinsame Konstante. Als Grundvoraussetzung ist natürlich eine exakte Aufnahmegeschwindigkeit mit minimaler Abweichung der Periodendauer zwischen zwei aufeinander folgenden Bildern unerlässlich. Eine Hochgeschwindigkeitskamera arbeitet sehr präzise und muss für hohe Synchronität regelmäßig einer Kalibrierung unterzogen werden.

Objektive für digitale Hochgeschwindigkeitskameras bei Crashtests

Hochgeschwindigkeitskameras benötigen angemessene Objektive. In Crashtests werden für die so genannten Onboard-Aufnahmen (Mitfahrend im Versuchsaufbau bzw. im Fahrzeug) nicht nur crash-feste Hochgeschwindigkeitskameras eingesetzt sondern auch crash-feste Objektive. In der Regel sind es Standard-Objektive gängiger Hersteller, die von den Herstellern der Hochgeschwindigkeitskameras geprüft und für geeignet erklärt worden sind.

Zoom-Objektive bzw. Objektive mit verstellbarer Brennweite können nicht Onboard eingesetzt werden, da diese grundsätzlich nicht crash-fest sein können. Zoom-Objektive sind gegenüber Objektiven mit fester Brennweite wesentlich komplizierter aufgebaut und haben im Inneren eine empfindliche Feinmechanik zum Einstellen der Entfernungen zwischen den einzelnen Optik-Segmenten (Linsen) des Objektives. Die besagte Feinmechanik im Inneren eines Zoom-Objektives kann die hohen Beschleunigungen eines Crashtestes in der Regel nicht aushalten. Zudem sind Zoom-Objektive wesentlich größer und schwerer als Festbrennweitenobjektive, sodass das Gewicht und die Größe des Objektives durch höheres Kippmoment bzw. höhere Seitenkraft dessen Befestigung an der Kamera beschädigen kann. Für den stationären Einsatz werden Zoom-Objektive jedoch bevorzugt genommen, da diese eine hohe Flexibilität beim Einstellen des Bildausschnittes liefern.

Ganz wichtig im Bezug auf Objektive ist auch die Lichtstärke eines Objektives. Bei Hochgeschwindigkeitskameras in Crashtests gilt: Je größer desto besser. Die Lichtstärke gibt indirekt die Lichtdurchlässigkeit eines Objektives wieder. Da man bei Hochgeschwindigkeitskameras mit geringen Belichtungszeiten und hohem Beleuchtungsaufwand arbeiten muss, sind Objektive mit hoher Lichtdurchlässigkeit zu bevorzugen. In der Regel werden Objektive mit Lichtstärken von 1:1,2 über 1:2,8 bis 1:4 eingesetzt. Bei Zoom-Objektiven muss darauf geachtet werden, dass die über die Blende eingestellte Lichtstärke über den gesamten Zoom-Bereich gleich bleibt. Zudem haben Zoom-Objektive aufgrund der höheren Anzahl an Linsen geringere Lichtstärken gegenüber den Objektiven mit fester Brennweite. Leider richtet sich der Preis eines Objektives sehr stark nach dessen Lichtstärke. Teilweise wird jede noch so kleine Steigerung der Lichtstärke durch Verdoppelung oder Verdreifachung des Preises erkauft. Zoom-Objektive mit über den gesamten Zoom-Bereich gleich bleibenden Lichtstärken kosten bis zu fünfmal mehr als gleiche Zoom-Objektive mit gleitender (sich verändernder) Lichtstärke. Oft muss ein Kompromiss getroffen werden.

Was den Wert der Brennweite betrifft, sollte man sich an den gegebenen Anforderungen und den gewünschten Bildausschnitten orientieren. Zu beachten ist lediglich, dass Objektive mit geringer Brennweite (≤ 16 mm), also Weitwinkel-Objektive, das Bild an den Rändern stark verzerren und so eine Analyse der Aufnahme erschweren. Objektive mit zu großen Brennweiten (≥ 200 mm), also Teleobjektive, können auch nur bedingt eingesetzt werden, da die Lichtintensität mit zunehmender Entfernung stark abnimmt und eine Belichtung mit Hochgeschwindigkeitskameras erschwert wird. In Crashtests werden Objektive mit Brennweitenbereichen von 4 mm bis ca. 100 mm eingesetzt, sodass Entfernungen von 0,3 m bis ca. 15 m zum zu filmenden Objekt problemlos abgedeckt werden.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Extremely high frequency — Frequency range 30 to 300 GHz ITU Radio Band Numbers 1 2 3 4 5 6 7 8 9 10 …   Wikipedia

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium

  • Active pixel sensor — An active pixel sensor (APS) is an image sensor consisting of an integrated circuit containing an array of pixel sensors, each pixel containing a photodetector and an active amplifier. There are many types of active pixel sensors including the… …   Wikipedia

  • Digital camera — Digicam redirects here. For the military camouflauge method using micropatterns, see Military camouflage#Digital camouflauge. A digital camera (or digicam) is a camera that takes video or still photographs, or both, digitally by recording images… …   Wikipedia

  • New Horizons — For other uses, see New Horizons (disambiguation). New Horizons Operator NASA Major contractors Applied Physics Laboratory (APL) Southwest Research Institute (SwRI) …   Wikipedia

  • Defence Research and Development Organisation — Sanskrit: बलस्य मूलं विज्ञानम् Strength s Origin is in Science [1] Agency overvi …   Wikipedia

  • List of astronomy acronyms — This is a compilation of acronyms commonly used in astronomy. Most of the acronyms are drawn from professional astronomy and are used quite frequently in scientific publications. However, a few of these acronyms are frequently used by the general …   Wikipedia

  • Digital single-lens reflex camera — Nikon D700 full frame (FX) digital SLR camera …   Wikipedia

  • Galileo (spacecraft) — Infobox Spacecraft Name = Galileo Orbiter Caption = Galileo is prepared for mating with the IUS booster Organization = NASA Major Contractors = Mission Type = Orbiter, fly by Flyby Of = Venus, Earth, 951 Gaspra, 243 Ida Satellite Of = Jupiter… …   Wikipedia

  • Energetic neutral atom — ENAs redirects here. For other uses, see Enas (disambiguation). Neutral Atom Imaging redirects here. For other uses, see Atom (disambiguation). ENA images of the fluctuation of Earth s ring current during July 15–16, 2000 geomagnetic storm made… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”