Kanalelektronenvervielfacher

Kanalelektronenvervielfacher

Ein Kanalelektronenvervielfacher oder auch Channeltron (KEV, englisch: channel electron multiplier, CEM) erzeugt aus einem primären Teilchen (Elektron, Photon oder Ion) durch Sekundärelektronenemission im Vakuum eine Elektronenlawine von ca. 108 Elektronen; diese leicht nachzuweisende Lawine erlaubt damit, die primären Teilchen mit Hilfe des KEV zu zählen.

Aufbau

Schnittdarstellung durch einen Kanalelektronenvervielfacher

Der KEV besteht z. B. aus einem isolierenden Glasröhrchen, dessen innere Oberfläche mit einer hochohmigen Schicht überzogen ist. Der Widerstand zwischen der Kathode am offenen Ende des Röhrchens und dem durch die Anode abgeschlossenen Ende liegt bei etwa 109 Ω, das Verhältnis der Röhrchenlänge zum inneren Durchmesser ist typischerweise 70. Die Betriebsspannung in der Größenordnung von 2 kV erzeugt längs der Röhrchenachse ein elektrisches Feld; beim Auftreffen des primären Teilchens auf den kathodennahen Bereich entstehen, im Allgemeinen mehrere, Sekundärelektronen, welche von diesem Feld beschleunigt werden und nach dem Auftreffen auf die hochohmige Schicht tertiäre Elektronen erzeugen, welche wiederum beschleunigt werden usw. bis zum Aufprall der so entstehenden Lawine auf die Anode.

Innerhalb eines KEV werden positive Ionen entgegengesetzt zu den Elektronen in Richtung der Kathode beschleunigt. Treffen sie dort in der Nähe der Kathode auf, würden dort entstehende Sekundärelektronen ebenfalls in etwa gleichstarke Elektronenlawinen auslösen und somit ein falsches Signal erzeugen. Dieser als Ionenrückwirkung bezeichnete Effekt wird bei KEV mit kreis- oder wendelförmig gebogenen Glasröhrchen wirkungsvoll unterbunden: Wegen der im Vergleich zu den Elektronen viel größeren Massen schließen die Ionenbahnen einen viel größeren Winkel mit den parallel zur Röhrchenachse verlaufenden elektrischen Feldlinien ein; die Laufwege der Ionen sind damit kurz; die Energie des Ions bleibt klein und es werden kaum Sekundärelektronen erzeugt. Zudem ist die Strecke vom Aufschlagpunkt des Ions bis zur Anode kleiner und ein Lawineneffekt ist damit deutlich kleiner.

Das auch von den Vakuumbedingungen abhängige Dunkelzählen eines KEV ist im allgemeinen erheblich kleiner als eine Lawine pro Sekunde. Bei geeigneter Wahl der Betriebsspannung und des Verhältnisses der Röhrchenlänge zum inneren Durchmesser lässt sich eine schmale Impulshöhenverteilung der Elektronenlawinen erreichen. Für Zählraten oberhalb von ca. 104 s-1 nimmt die Impulshöhe merklich ab, weil dem durch den KEV gebildeten Kondensator, durch die vorangegangene Lawine entleert, die Zeit zur vollständigen Aufladung fehlt. Sehr hohe Zählraten können den KEV unbrauchbar machen, vermutlich durch Überhitzung der hochohmigen Schicht.


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Elektronenvervielfacher — Sekundärelektronenvervielfacher zur Detektion von Elektronen. Links ist die Eintrittsöffnung; die vielen Platten rechts davon sind Halteplatten für die Dynoden. Ein Sekundärelektronenvervielfacher (SEV) ist eine Elektronenröhre, in welcher durch… …   Deutsch Wikipedia

  • Sekundärelektronen-Vervielfacher — Sekundärelektronenvervielfacher zur Detektion von Elektronen. Links ist die Eintrittsöffnung; die vielen Platten rechts davon sind Halteplatten für die Dynoden. Ein Sekundärelektronenvervielfacher (SEV) ist eine Elektronenröhre, in welcher durch… …   Deutsch Wikipedia

  • Elektronenspektroskopie zur Chemischen Analyse — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • Fotoelektronenbeugung — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • PEEM — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • Photoelektronenbeugung — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • Photoemissionselektronenmikroskopie — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • Photoemissionsmikroskopie — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • Photoemissionsspektroskopie — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

  • Röntgen-Photoelektronenspektroskopie — Typisches PES System mit Halbkugelanalysator, Röntgenröhren und diversen Präparationsmethoden Die Photoelektronenspektroskopie (PES) oder Photoemissionsspektroskopie (kurz Photoemission) beruht auf dem äußeren Photoeffekt, bei dem durch… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”