Kokern

Kokern

Im mathematischen Teilgebiet der Algebra ist der Kern einer Abbildung die Menge der Elemente, die auf die 0 oder allgemeiner das neutrale Element abgebildet werden. Der Kern wird häufig auch als Nullraum bezeichnet.

\ker f := \{ g\in G \mid f(g) = e_H\in H \}
aller Elemente von G, die auf das neutrale Element eH von H abgebildet werden, Kern von f genannt. Er ist ein Normalteiler in G.
\ker f := \{ v \in V \mid f(v) = 0 \in W\}
der Kern von f. Er ist ein f-invarianter Untervektorraum von V.
\ker f :=\{ a\in A\mid f(a) = 0\}
der Kern von f. Er ist ein zweiseitiges Ideal in A.

Der Kern ist von zentraler Bedeutung im Homomorphiesatz.

Inhaltsverzeichnis

Bedeutung

Eine lineare Abbildung bzw. ein Homomorphismus ist genau dann injektiv, wenn der Kern nur aus dem Nullvektor bzw. dem neutralen Element besteht.

Beispiel (lineare Abbildung von Vektorräumen)

Wir betrachten die lineare Abbildung f: \mathbb R^3 \to \mathbb R^3, die durch

f(x)= \begin{pmatrix}1&0&0\\0&1&0\\0&0&0\end{pmatrix}\begin{pmatrix} x_1\\x_2\\ x_3\end{pmatrix} = \begin{pmatrix} x_1\\x_2\\ 0\end{pmatrix}

definiert ist. Die Abbildung f bildet genau die Vektoren der Form

x=\begin{pmatrix}0\\0\\\lambda \end{pmatrix}, \lambda \in \mathbb R

auf den Nullvektor ab und andere nicht. Der Kern von f ist also die Menge

\operatorname{ker}\, (f) = \left\{ \begin{pmatrix}0\\0\\\lambda \end{pmatrix}, \lambda \in \mathbb R\right\}.

Geometrisch ist der Kern in diesem Fall eine Gerade (die z-Achse) und hat demnach die Dimension 1. Die Dimension des Kerns wird auch als Defekt bezeichnet und kann mit Hilfe des Rangsatzes explizit berechnet werden.

Verallgemeinerungen

In einer Kategorie mit Nullobjekten ist ein Kern eines Morphismus fX → Y der Differenzkern des Paares (f, 0), d.h. charakterisiert durch die folgende universelle Eigenschaft:

  • Ist t: TX ein Morphismus, so dass ft = 0 ist, so faktorisiert t über ker f.

In der universellen Algebra ist der Kern einer Abbildung f: AB die durch f induzierte Äquivalenzrelation auf A, also die Menge ker(f):={(x,y): f(x)=f(y)}. Wenn A und B algebraische Strukturen gleichen Typs sind (z.B.: A und B sind Verbände) und f ein Homomorphismus von A nach B ist, dann ist die Äquivalenzrelation ker(f) auch eine Kongruenzrelation. Umgekehrt zeigt man auch leicht, dass jede Kongruenzrelation Kern eines Homomorphismus ist.

Kokern

Der Kokern ist der duale Begriff zum Kern.

Ist fV → W eine lineare Abbildung von Vektorräumen über einem Körper, so ist der Kokern von f der Quotient von W nach dem Bild von f.

Entsprechend ist der Kokern für Homomorphismen abelscher Gruppen oder Moduln über einem Ring definiert.

Der Kokern erfüllt die folgende universelle Eigenschaft: Jeder Homomorphismus tW → T, für den tf = 0 gilt, faktorisiert über den Kokern von f.

Diese Eigenschaft ist auch die Definition für den Kokern in beliebigen Kategorien mit Nullobjekten. In abelschen Kategorien stimmt der Kokern mit dem Quotienten nach dem Bild überein.


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Nullraum — Im mathematischen Teilgebiet der Algebra ist der Kern einer Abbildung die Menge der Elemente, die auf die 0 oder allgemeiner das neutrale Element abgebildet werden. Der Kern wird häufig auch als Nullraum bezeichnet. Ist ein Gruppenhomomorphismus …   Deutsch Wikipedia

  • Kern (Mathematik) — Im mathematischen Gebiet der Algebra ist der Kern oder Nullraum einer Abbildung die Menge der Elemente, die auf die 0 oder allgemeiner das neutrale Element abgebildet werden. Eine besondere Bedeutung hat dieser Begriff, wenn es sich bei der… …   Deutsch Wikipedia

  • Lineare Gleichung — Eine lineare Gleichung ist eine mathematische Bestimmungsgleichung, in der ausschließlich Linearkombinationen der Unbekannten vorkommen. Typischerweise sind die Unbekannten einer linearen Gleichung Skalare, meist reelle Zahlen. Im einfachsten… …   Deutsch Wikipedia

  • Schlangenlemma — Das Schlangenlemma, eine in allen abelschen Kategorien gültige Aussage aus dem mathematischen Teilgebiet der homologischen Algebra, ist ein wichtiges Werkzeug zur Konstruktion der in der homologischen Algebra weit verbreiteten langen exakten… …   Deutsch Wikipedia

  • Bild (Kategorientheorie) — In der Kategorientheorie ist ein Bild eines Morphismus ein Unterobjekt von Y, das die folgende universelle Eigenschaft hat: Es gibt einen Morphismus mit f = hg. Für jedes Unterobjekt , das obige Eigenschaft erfüllt (f = lk) …   Deutsch Wikipedia

  • Derivierter Funktor — Im mathematischen Teilgebiet der Kategorientheorie ist ein abgeleiteter Funktor eines links oder rechtsexakten Funktors ein Maß dafür, wie weit dieser von der Exaktheit abweicht. Die Bezeichnung rührt daher, dass analog dazu die Ableitungen einer …   Deutsch Wikipedia

  • Elementarteilersatz — In der Algebra bezeichnet man Integritätsbereiche als Hauptidealringe oder Hauptidealbereiche, wenn jedes Ideal ein Hauptideal ist. Die wichtigsten Beispiele für Hauptidealringe sind der Ring der ganzen Zahlen sowie Polynomringe in einer… …   Deutsch Wikipedia

  • Gromow-Witten-Invariante — Gromov Witten Invarianten sind eine spezielle Form topologischer Invarianten, welche eine Verbindung zwischen Topologie und Algebra herstellen. Genauer bezeichnen sie in der symplektischen Topologie und algebraischen Geometrie rationale Zahlen,… …   Deutsch Wikipedia

  • Hauptidealbereich — In der Algebra bezeichnet man Integritätsbereiche als Hauptidealringe oder Hauptidealbereiche, wenn jedes Ideal ein Hauptideal ist. Die wichtigsten Beispiele für Hauptidealringe sind der Ring der ganzen Zahlen sowie Polynomringe in einer… …   Deutsch Wikipedia

  • Kobild — In der Kategorientheorie ist ein Bild eines Morphismus f: X → Y ein Unterobjekt i: im f → Y von Y, das die folgende universelle Eigenschaft hat: Ist t: T → Y ein Morphismus aus einem Testobjekt T, so dass t über f faktorisiert, so gibt es genau… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”