Lie-Algebren — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia
Lie-Unteralgebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia
Lie-Algebra — Eine Lie Algebra, benannt nach Sophus Lie, ist eine algebraische Struktur, die hauptsächlich zum Studium geometrischer Objekte wie Lie Gruppen und differenzierbarer Mannigfaltigkeiten eingesetzt wird. Inhaltsverzeichnis 1 Definition 2 Beispiele 2 … Deutsch Wikipedia
Lie-Ableitung — In der Analysis bezeichnet die Lie Ableitung (nach Sophus Lie) die Ableitung eines Vektorfeldes oder allgemeiner eines Tensorfeldes entlang eines Vektorfeldes. Mit ihrer Hilfe kann eine Lie Klammer für Vektorfelder definiert werden, wodurch die… … Deutsch Wikipedia
Lie-Gruppe — Eine Lie Gruppe (auch Liesche Gruppe), benannt nach Sophus Lie, ist eine mathematische Struktur, die zur Beschreibung von kontinuierlichen Symmetrien verwendet wird. Lie Gruppen sind in fast allen Teilen der heutigen Mathematik sowie in der… … Deutsch Wikipedia
Abelsche Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia
Auflösbare Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia
Einfache Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia
Ideal (Lie-Algebra) — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia
Nilpotente Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum … Deutsch Wikipedia