Maximales und minimales Element
- Maximales und minimales Element
-
Die Begriffe maximales Element und minimales Element werden in der Mengenlehre, genauer in der Ordnungstheorie verwendet.
Ein Element einer geordneten Menge ist maximal, wenn es kein größeres gibt. Es ist minimal, wenn es kein kleineres gibt.
In einer total geordneten Menge stimmen die Begriffe maximales Element und größtes Element sowie minimales Element und kleinstes Element überein. Ein maximales bzw. minimales Element einer partiell geordneten Menge ist jedoch nicht automatisch deren größtes bzw. kleinstes Element.
Definitionen
sei eine partielle Ordnung, eine Teilmenge der Grundmenge X und .
- ist maximales Element von
- ist minimales Element von
Beispiele
- M := {2, 3, 4, 6, 9, 12, 18} ist die Menge der nichttrivialen natürlichen Teiler der Zahl 36. Diese Menge ist bezüglich der Teilbarkeit partiell geordnet. Minimale Elemente sind 2 und 3, maximal sind 12 und 18. Es gibt kein kleinstes und kein größtes Element.
- Die nichtleeren Teilmengen einer gegebenen nichtleeren Menge X sind durch Inklusion partiell geordnet. Minimal in dieser Ordnung sind alle einelementigen Teilmengen {x}, maximales (und auch größtes) Element ist X selbst.
- In einem Vektorraum ist eine Basis eine (bezüglich Inklusion) maximale linear unabhängige Teilmenge.
Eigenschaften
- Jede endliche nichtleere geordnete Menge hat minimale und maximale Elemente, unendliche geordnete Mengen müssen keine maximalen und minimalen Elemente haben.
- Eine total geordnete Menge hat höchstens ein maximales und ein minimales Element, partiell geordnete Mengen können mehrere maximale und minimale Elemente haben.
- Ist x das größte Element von M, dann ist x auch das einzige maximale Element von M. Die Umkehrung gilt nicht: Auch wenn M genau ein maximales Element hat, ist dieses nicht automatisch größtes Element.
- Ist x das kleinste Element von M, dann ist x auch das einzige minimale Element von M. Die Umkehrung gilt nicht: Auch wenn M genau ein minimales Element hat, ist dieses nicht automatisch kleinstes Element.
- Hat jede Kette in einer nichtleeren halbgeordneten Menge eine obere Schranke, dann hat die Menge mindestens ein maximales Element. (Dies ist das Lemma von Zorn.)
- Für zwei verschiedene maximale oder zwei verschiedene minimale Elemente x und y gilt weder noch . Dies lässt sich noch verallgemeinern: Die Menge aller maximalen Elemente ist eine Antikette in der Ordnung. Gleiches gilt für die Menge aller minimalen Elemente.
Literatur
- Oliver Deiser: Einführung in die Mengenlehre, 2. Auflage, Springer, Berlin 2004, ISBN 3-540-20401-6
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Minimales Element — Die Begriffe maximales Element und minimales Element werden in der Mengenlehre, genauer in der Ordnungstheorie verwendet. Ein Element einer geordneten Menge ist maximal, wenn es kein größeres gibt. Es ist minimal, wenn es kein kleineres gibt. Für … Deutsch Wikipedia
Größtes und kleinstes Element — Das größte beziehungsweise kleinste Element sind Begriffe aus der Mengenlehre, genauer der Ordnungstheorie. Das größte Element wird auch als Maximum bezeichnet, dementsprechend spricht man beim kleinsten Element vom Minimum. Ein Element einer… … Deutsch Wikipedia
Maximales Element — Die Begriffe maximales Element und minimales Element werden in der Mengenlehre, genauer in der Ordnungstheorie verwendet. Ein Element einer geordneten Menge ist maximal, wenn es kein größeres gibt. Es ist minimal, wenn es kein kleineres gibt. Für … Deutsch Wikipedia
Größtes Element — Das größte Element (Maximum) und das kleinste Element (Minimum) sind Begriffe aus der Mengenlehre, genauer der Ordnungstheorie. Ein Element einer geordneten Menge ist das größte Element der Menge, wenn alle anderen Elemente kleiner sind. Es ist… … Deutsch Wikipedia
Kleinstes Element — Das größte Element (Maximum) und das kleinste Element (Minimum) sind Begriffe aus der Mengenlehre, genauer der Ordnungstheorie. Ein Element einer geordneten Menge ist das größte Element der Menge, wenn alle anderen Elemente kleiner sind. Es ist… … Deutsch Wikipedia
Maximumsfunktion — Das größte Element (Maximum) und das kleinste Element (Minimum) sind Begriffe aus der Mengenlehre, genauer der Ordnungstheorie. Ein Element einer geordneten Menge ist das größte Element der Menge, wenn alle anderen Elemente kleiner sind. Es ist… … Deutsch Wikipedia
Minimumsfunktion — Das größte Element (Maximum) und das kleinste Element (Minimum) sind Begriffe aus der Mengenlehre, genauer der Ordnungstheorie. Ein Element einer geordneten Menge ist das größte Element der Menge, wenn alle anderen Elemente kleiner sind. Es ist… … Deutsch Wikipedia
Absteigende Kette — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… … Deutsch Wikipedia
Aufsteigende Kette — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… … Deutsch Wikipedia
Geordnete Menge — In der Mathematik sind Ordnungsrelationen Verallgemeinerungen der „kleiner gleich“ Beziehung. Sie erlauben es, Elemente einer Menge miteinander zu vergleichen. Eine Ordnungsrelation ist formal eine zweistellige Relation auf einer Menge M mit… … Deutsch Wikipedia