Orthogonalisierungsverfahren
Schlagen Sie auch in anderen Wörterbüchern nach:
Gram-Schmidtsches Orthogonalisierungsverfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Orthogonalisierung — Mit Orthogonalisierungsverfahren bezeichnet man in der Mathematik Algorithmen, die aus einem System linear unabhängiger Vektoren ein Orthogonalsystem erzeugen, das den gleichen Untervektorraum aufspannt. Das bekannteste Verfahren dieser Art ist… … Deutsch Wikipedia
Gram-Schmidt — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Gram-Schmidt-Orthogonalisierung — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Gram-Schmidt-Prozess — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Gram-Schmidt-Verfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Gram-Schmidtsche Orthonormalisierungsverfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Gram-Schmidtsches Orthonormalisierungsverfahren — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Gram Schmidt — Das Gram Schmidtsche Orthogonalisierungsverfahren ist ein Algorithmus aus dem mathematischen Teilgebiet der linearen Algebra. Er erzeugt zu jedem System linear unabhängiger Vektoren aus einem Prähilbertraum, d. h. einem Vektorraum mit… … Deutsch Wikipedia
Legendre-Polynome — Die Legendre Polynome, auch zonale Kugelfunktionen genannt, sind die partikulären Lösungen der legendreschen Differentialgleichung. Sie sind spezielle reelle oder komplexe Polynome, die ein orthogonales Funktionensystem bilden. Benannt sind sie… … Deutsch Wikipedia