- Stabilität (Numerik)
-
In der numerischen Mathematik heißt ein Verfahren stabil, wenn es gegenüber kleinen Störungen der Daten unempfindlich ist. Insbesondere bedeutet dies, dass sich Rundungsfehler nicht zu stark auf die Berechnung auswirken. Man unterscheidet in der Numerik hierbei Kondition, Stabilität und Konsistenz, die untereinander stark verwandt sind. Stabilität ist dabei eine Eigenschaft des Algorithmus und die Kondition eine Eigenschaft des Problems. Die Beziehung zwischen Kondition eines Problems und Stabilität lässt sich wie folgt beschreiben:
Es sei f(x) das mathematische Problem in Abhängigkeit von der Eingabe x, und es sei der numerische Algorithmus, sowie die gestörten Eingabedaten. So möchte man den folgenden Fehler abschätzen:
Mit der Dreiecksungleichung gilt:
Hierbei bezeichnet man mit die Kondition des Problems und die Stabilität.
Also beschreibt die Stabilität die Robustheit des numerischen Verfahrens gegenüber Störungen in den Eingabedaten, insbesondere bedeutet dies, dass sich Rundungsfehler nicht summieren und zu Störungen in der Lösung führen. Die Quantifizierung des Begriffes ist jedoch nach Problem und verwendeter Norm unterschiedlich.
Stabilität und Konsistenz hängen im Regelfall derart zusammen, dass sie, manchmal noch mit einer kleinen Zusatzvoraussetzung, äquivalent zu Konvergenz der (numerischen) Lösung gegen die analytische sind.
Inhaltsverzeichnis
Die beiden Analyseverfahren
Vorwärtsanalyse
Ein Verfahren heißt stabil, wenn es eine Konstante gibt, so dass gilt:
wobei κ die relative Kondition des Problems und die Maschinengenauigkeit bezeichnet. σ quantifiziert die Stabilität im Sinne der Vorwärtsanalyse.
Rückwärtsanalyse
Das zweite gängige Analyseverfahren ist die von James Hardy Wilkinson eingeführte Rückwärtsanalyse. Meistens kennt man eine sinnvolle obere Schranke ε für den unvermeidbaren relativen Eingabefehler (problemabhängig kann das ein Messfehler oder auch ein Rundungsfehler sein). Um den durch den Algorithmus verursachten Fehler besser einschätzen zu können, rechnet man ihn bei der Rückwärtsanalyse in einen äquivalenten Fehler in den Eingangsdaten des Problems um, der auch als Rückwärtsfehler bezeichnet wird. Die formale Definition des Rückwärtsfehlers des Algorithmus für die (gerundeten) Eingabedaten (mit ) lautet:
wobei für Definitionsbereich steht.
Der Algorithmus ist rückwärtsstabil, wenn der relative Rückwärtsfehler für alle kleiner als der unvermeidbare relative Eingabefehler ist. Für manche Anwendungen schwächt man diese Forderung ab und lässt noch eine dem Problem angemessene Konstante C > 1 zu, mit der
- für alle
gelten soll. Manchmal interessiert man sich auch nur dafür, ob der relative Rückwärtsfehler überhaupt beschränkt ist.
Man kann zeigen, dass Rückwärtsstabilität die Vorwärtsstabilität impliziert.
Anwendungen
Addition
Da man zeigen kann, dass die relative Kondition der Addition bei zwei Zahlen im Falle der Auslöschung (Ergebnis ist nah an 0) beliebig schlecht sein kann, folgt aus der Definition der Vorwärtsanalyse, dass die Addition als numerisches Verfahren (im Computer) stabil ist.
Differentialgleichungen
Bei numerischen Lösern für Differentialgleichungen mit Anfangs- oder Randwerten, bzw. mit rechter Seite f versucht man eine Abschätzung der entwickelten Lösung von diesen Eingabegrößen zu erhalten. Im Sinne der Vorwärtsanalyse gibt es in diesem Fall die Konstante σ.
Gewöhnliche Differentialgleichungen
Hier gilt der Äquivalenzsatz von Lax, nach dem Null-Stabilität und Konsistenz äquivalent zu Konvergenz des Verfahrens sind.
Zu konkreten Verfahren wird das Stabilitätsgebiet definiert als die Menge der komplexen Zahlen für die das numerische Verfahren bei der Lösung der dahlquistschen Testgleichung
bei fester Schrittweite Δt eine monoton fallende Folge von Näherungen liefert.
Der beste Fall ist, wenn das Stabilitätsgebiet die komplette linke Halbebene enthält, dann heißt das Verfahren A-stabil.
Partielle Differentialgleichungen
Das Standardverfahren zur Stabilitätsanalyse von numerischen Verfahren für partielle Differentialgleichungen ist die Von-Neumann-Stabilitätsanalyse, die für lineare Probleme notwendige und hinreichende Aussagen macht, für nichtlineare Probleme jedoch nur notwendige.
Siehe auch: Stabilitätstheorie
Literatur
- J. H. Wilkinson: Error Analysis of Direct Methods of Matrix Inversion. Journal of the ACM, Vol. 8(1961), No. 3, pp. 281-330
- Deuflhard, Hohmann: Numerische Mathematik I deGruyter
- Krause: Praktische Mathematik Universität Bonn
- Hermann, M.: Numerische Mathematik, Oldenbourg Verlag, München und Wien, 2001, ISBN 3-486-25558-4
- Hermann, M.: Numerik gewöhnlicher Differentialgleichungen, Anfangs- und Randwertprobleme, Oldenbourg Verlag, München und Wien, 2004, ISBN 3-486-27606-9
Wikimedia Foundation.