- Randpunkt
-
Im mathematischen Teilgebiet der Topologie ist der Begriff Rand eine Abstraktion der anschaulichen Vorstellung einer Begrenzung eines Bereiches. Formal ist der Rand einer Teilmenge U eines topologischen Raumes die Differenzmenge zwischen Abschluss und Innerem von U. Der Rand einer Menge U wird üblicherweise mit
bezeichnet, also:
.
Damit verwandte aber abweichende Randbegriffe gibt es in der algebraischen Topologie und in der Theorie von Mannigfaltigkeiten.
Eigenschaften
- Der Rand einer Menge ist stets abgeschlossen.
- Der Rand einer Menge U besteht genau aus den Punkten, für die gilt, dass jede ihrer Umgebungen sowohl Punkte aus U als auch Punkte, die nicht in U liegen, enthält.
- Der Rand einer Menge ist stets gleich dem Rand ihres Komplements.
- Der Rand einer Menge ist der Schnitt des Abschlusses der Menge mit dem Abschluss ihres Komplementes.
- Eine Menge ist genau dann abgeschlossen, wenn sie ihren Rand enthält.
- Eine Menge ist genau dann offen, wenn sie zu ihrem Rand disjunkt ist.
- Eine Menge ist genau dann offen und abgeschlossen, wenn ihr Rand leer ist.
- Es seien X ein topologischer Raum,
eine offene Teilmenge mit der Teilraumtopologie und
eine Teilmenge. Dann ist der Rand von
in Y gleich dem Schnitt von Y mit dem Rand von U in X. Lässt man die Voraussetzung der Offenheit von Y fallen, so gilt die entsprechende Aussage selbst dann nicht, wenn U eine Teilmenge von Y ist, wie das Beispiel
, U = Y = {0} zeigt.
Beispiele
- Ist U eine offene oder abgeschlossene Kreisscheibe in der Ebene
, so ist der Rand von U die zugehörige Kreislinie.
- Der Rand von
als Teilmenge von
ist ganz
.
Wikimedia Foundation.