Rechtstotal

Rechtstotal
Eine surjektive Funktion; X ist die Definitionsmenge und Y die Zielmenge.

Surjektivität (surjektiv) ist eine Eigenschaft einer mathematischen Funktion.

Sie bedeutet, dass jedes Element der Zielmenge mindestens einmal als Funktionswert angenommen wird, also mindestens ein Urbild hat.

In der Sprache der Relationen ist der entsprechende Begriff rechtstotal.

Eine surjektive Funktion wird auch als Surjektion bezeichnet.

Inhaltsverzeichnis

Definition

Es seien X und Y Mengen, sowie f : X \to Y eine Abbildung.

f heißt surjektiv, wenn für alle y aus Y mindestens ein x aus X mit f(x) = y existiert.

Formal: \forall y \in Y \ \exists x \in X : f(x)=y

Grafische Veranschaulichungen

Das Prinzip der Surjektivität: Jeder Punkt in der Zielmenge (Y) wird mindestens einmal getroffen.
Drei surjektive Funktionen zwischen reellen Intervallen.
Ein Sonderfall der Surjektivität: Die Zielmenge (Y) besteht nur aus einem Element.

Beispiele und Gegenbeispiele

  • Die Funktion f: \mathbb{R} \to \mathbb{R} mit f(x) = 2x + 1 ist surjektiv, denn für jede reelle Zahl y gibt es ein Urbild. Aus der Gleichung y = 2x + 1 erhält man nämlich durch Äquivalenzumformung die Gleichung x = (y − 1) / 2, womit sich für jedes y ein Urbild x berechnen lässt.
  • Die Sinus-Funktion  \sin: \mathbb{R} \to [-1, 1] ist surjektiv. Jede horizontale Gerade y = c mit  -1 \leq c \leq 1 hat unendlich viele Schnittpunkte mit dem Graphen der Funktion.
  • Die Sinus-Funktion \sin: \mathbb{R} \to \mathbb{R} ist jedoch nicht surjektiv, da z. B. die Gerade y = 2 keinen Schnittpunkt mit dem Graphen hat, der Wert 2 also nicht als Funktionswert angenommen wird.
f_1:\mathbb{R}\rightarrow\mathbb{R}\ , \ x \mapsto x^2 ist nicht surjektiv.
f_2:\mathbb{C}\rightarrow\mathbb{C}\ , \ x \mapsto x^2 ist surjektiv.

Eigenschaften

  • Man beachte, dass die Surjektivität einer Funktion f : A \to B nicht nur vom Funktionsgraphen \{(x, f(x)) \mid x \in A\}, sondern auch von der Zielmenge B abhängt (im Gegensatz zur Injektivität, welche man am Funktionsgraphen ablesen kann).
  • Sind die Funktionen f : A \to B und g : B \to C surjektiv, dann gilt dies auch für die Komposition (Verkettung) g \circ f : A \to C.
  • Aus der Surjektivität von g \circ f folgt, dass g surjektiv ist.
  • Eine Funktion f : A \to B ist genau dann surjektiv, wenn f eine rechte Inverse hat, also eine Funktion g : B \to A mit f \circ g = \operatorname{id}_B (wobei \operatorname{id}_B die identische Abbildung auf B bezeichnet). Diese Aussage ist äquivalent zum Auswahlaxiom der Mengenlehre.
  • Eine Funktion f : A \to B ist genau dann surjektiv, wenn f rechts kürzbar ist, also für beliebige Funktionen g, h : B \to C mit g \circ f = h \circ f schon g = h folgt.
  • Jede beliebige Funktion f : A \to B ist darstellbar als Verkettung f = h \circ g, wobei g surjektiv und h injektiv ist. g : A \to \operatorname{im} f hat dabei die Bildmenge von f als Zielmenge und stimmt ansonsten mit f überein (hat denselben Funktionsgraphen).

Mächtigkeiten von Mengen

Für eine endliche Menge A ist die Mächtigkeit | A | einfach die Anzahl der Elemente von A. Ist nun f : A \to B eine surjektive Funktion zwischen endlichen Mengen, dann kann B höchstens so viele Elemente wie A haben, es gilt also |B| \le |A|.

Für unendliche Mengen wird der Größenvergleich von Mächtigkeiten zwar mit Hilfe des Begriffs Injektion definiert, aber auch hier gilt: Ist f : A \to B surjektiv, dann ist die Mächtigkeit von B kleiner oder gleich der Mächtigkeit von A, ebenfalls geschrieben als |B| \le |A|.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Rechtseindeutig — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Rechtseindeutige Relation — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Rechtseindeutigkeit — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Relation (Mathematik) — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Relation (Mengentheorie) — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Relationszeichen — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Zweistellige Relation — Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob sie bestehen oder nicht. Zwei Gegenstände können also nicht …   Deutsch Wikipedia

  • Inverse Abbildung — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… …   Deutsch Wikipedia

  • Inverse Funktion — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… …   Deutsch Wikipedia

  • Kryptologische Hashfunktion — Eine kryptologische Hashfunktion oder kryptographische Hashfunktion ist eine spezielle Form der Hashfunktion, welche zusätzlich kollisionsresistent oder eine Einwegfunktion (oder beides) ist. Eine Hashfunktion ist eine Funktion, die eine… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”