Reflexionsgitter

Reflexionsgitter
Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters.

Optische Gitter, auch Beugungsgitter oder Mehrfachspalt genannt, bestehen aus einer großen Zahl von Längsstrukturen in gleichmäßigem Abstand:

  • Spalten in intransparentem Material oder Strichen auf einer transparenten Platte (Draht-, Spalt- oder Strichgitter)
  • Gräben oder Rillen auf einer reflektierenden Fläche (Reflexionsgitter)

Das Licht der Einzelspalte interferiert und bildet ein Interferenzmuster. Optische Gitter werden u.a. in Monochromatoren, Spektrometern, bei Lasershows und bei der Verstärkung kurzer Laser-Impulse hoher Leistung eingesetzt.

Inhaltsverzeichnis

Bauformen

Für verschiedene Anwendungen gibt es Gittertypen wie Amplitudengitter, Phasengitter, Transmissions- und Reflexionsgitter.

Transmissionsgitter

Drahtgitter

1820 benutzte Joseph von Fraunhofer Drähte, die er dicht nebeneinander spannte. Ebenso wirken feine Gewebe (etwa Kaffeefilter aus Polyamid-Gewebe).

Ein Drahtgitter ist auch das oben abgebildete Röntgenbeugungsgitter.

Drahtgitter können auch bei Mikrowellen, Millimeterwellen, Terahertzstrahlung und im mittleren/fernen Infrarot zum Einsatz kommen, sie besitzen dann entsprechend große Gitterkonstanten

Röntgenbeugung

Die Beugung und Interferenz von monochromatischer Röntgenstrahlung an den Atomen eines Festkörpers kann zur Kristallanalyse genutzt werden. Die monochromatische Röntgenstrahlung selbst wird ebenfalls durch Beugung und Interferenz an Kristallen erzeugt.

Strichgitter

Strichgitter bestehen aus auf Glasplatten aufgebrachten parallelen schwarzen Streifen oder Metallstreifen. Die Gitterstrukturen können auf dem Wege der Holografie oder durch Interferenz des der Belichtung dienenden Lichtes direkt in Fotolack auf metallbeschichtetem Glas oder Kunststoff erzeugt werden. Man ist somit nicht auf Fotolithografie von einer Maske angewiesen und kann sehr kleine Gitterkonstanten erzeugen.

Reflexionsgitter

Reflexionsgitter bestehen aus parallelen Gräben oder Rillen in einer Spiegelfläche. Sie sind effizienter als Transmissionsgitter, da nahezu die gesamte Strahlungsleistung in das Interferenzmuster oder das Spektrum gelangt.
Dabei werden mittels eines Diamanten in eine Metalloberfläche parallele Rillen geritzt.
Der Physiker Henry Augustus Rowland verbesserte 1882 die Herstellung von in Metall geritzten Reflexionsgittern entscheidend: Er erhöhte die Herstellungspräzision und fertigte erstmals konkave Gitter.

Die Massenfertigung ist durch Herstellen eines Replikats möglich. Dabei wird ein mit Diamantwerkzeugen in einer Metalloberfläche hergestelltes Mastergitter durch Abformen in Thermoplast und Beschichten mit Metall vervielfältigt. Die Fertigung gleicht derjenigen einer CD-ROM.
Man ist nicht auf den hochpräzisen spanenden Herstellungsprozess angewiesen und kann optische Gitter in reproduzierbarer Qualität herstellen.

Dennoch besitzen die mechanisch hergestellten (geritzten) Gitter Vorteile für spezielle Anwendungen, so etwa höhere Effizienz in engen Wellenlängenbereichen, höhere mechanische Festigkeit und höhere Strahlungs-Belastbarkeit (siehe auch Chirp).

In Monochromatoren werden häufig so genannte Blazegitter eingesetzt. Dies sind speziell geformte (Reflexions-)Gitter mit optimierten Winkeln der Spalten, die möglichst viel Licht in eine bestimmte Beugungsordnung lenken sollen. Dies ist vorteilhaft, da bei herkömmlichen Gittern der Hauptanteil der Leistung in die nullte Ordnung gelangt und damit ungenutzt bleibt.

Auch Reflexionsgitter können durch Fotolithografie holografisch oder durch Abbildung einer Maske hergestellt werden. Vorteile der fotolithografisch erzeugten Gitter ist neben dem Kostenaspekt in der Regel auch ein niedrigerer Streulichtanteil. – Weiterhin können holografische Gitter (noch besser als Blazegitter) daraufhin optimiert werden, dass die reflektierte Lichtenergie überwiegend in die erste Beugungsordnung abgestrahlt wird, so dass die Effizienz beträchtlich gesteigert wird. – Eine letzte Option besteht darin, nicht ein ebenes Reflexionsgitter, sondern eines in Form eines konkaven Hohlspiegels herzustellen (engl. concave blazed holographic gratings). Damit erspart man sich in einem Monochromator sonst notwendige Abbildungselemente, wodurch die Effizienz und die Abbildungsgüte weiter gesteigert wird.

Monochromatische Röntgenstrahlung wird durch flache Reflexion an einem Kristall gewonnen; die regelmäßig nahe der Kristalloberfläche angeordneten Atome wirken als Reflexionsgitter.

Funktion

Die Intensitätsverteilung für rotes sowie blaues Licht für N = 2 bis N = 30000 als Funktion des Winkels dargestellt. Die Funktion wurde mit 1/N² skaliert.

Licht, das auf ein Beugungsgitter auftrifft, wird vergleichbar zum Doppelspaltexperiment gebeugt, die so entstehenden Elementarwellen interferieren und bilden so ein Gitterspektrum.

Im Gegensatz zu den Spektren von Einzelspalt und Doppelspalt werden die Hauptmaxima jedoch mit steigenden Gitterspalten schärfer abgebildet, die Nebenmaxima werden zahlreicher, aber schwächer. Somit steigt das Auflösungsvermögen.

Die Intensitätsverteilung ist

I_\alpha = I_0 \frac{\sin^2(\pi \cdot d \cdot \sin \alpha \cdot \lambda^{-1})}{(\pi \cdot d \cdot \sin \alpha \cdot \lambda^{-1})^2} \frac {\sin^2(N \cdot \pi \cdot g \cdot \sin \alpha \cdot \lambda^{-1})}{\sin^2(\pi \cdot g \cdot \sin \alpha \cdot \lambda^{-1})}.

Für die Hauptmaxima gilt

\lambda = \frac{g \cdot \sin \alpha_n}{n}

mit

g: Gitterkonstante
n=1,2,3,\dots: Ordnung des Maximums
N: Anzahl der Gitterspalte
αn: Ablenkungswinkel der Beugungsordnung n.

Der Ausdruck für die Intensitätsverteilung ergibt sich dabei durch Multiplikation der Fouriertransformierten eines Gitters aus Deltadistributionen

\mathcal{F}\left(\sum_{n=0}^{N-1}\delta(x-ng)\right)=\frac {\sin^2(N \cdot \pi \cdot g \cdot \sin \alpha \cdot \lambda^{-1})}{\sin^2(\pi \cdot g \cdot \sin \alpha \cdot \lambda^{-1})}

mit der Intensitätsverteilung eines Einzelspaltes. Dies liegt am Faltungstheorem, das es ermöglicht, die Fouriertransformation der Faltung in zwei einzelne Fouriertransformationen aufzuspalten.

Das Auflösungsvermögen eines Gitters ergibt sich nach dem Rayleigh-Kriterium somit zu \frac{\lambda}{\Delta\lambda}=nN

Anwendungen

Optische Gitter werden in optischen Messeinrichtungen zur Monochromatisierung (Monochromator) und Analyse der Spektren (optisches Spektrometer) eingesetzt. Ebenso werden damit Laser frequenzstabilisiert (siehe Bragg-Reflektor, DFB-Laser) und deren Nachverstärkung bei hohen Impulsleistungen ermöglicht (siehe Chirp).

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Reflexionsgitter — Reflexionsgitter, s. Beugung des Lichtes, S. 779 …   Meyers Großes Konversations-Lexikon

  • Reflexionsgitter — atspindžio gardelė statusas T sritis fizika atitikmenys: angl. reflecting grating; reflection grating vok. Reflexionsgitter, n rus. отражательная решётка, f pranc. réseau de réflexion, m; réseau par réflexion, m …   Fizikos terminų žodynas

  • Reflexionsgitter — Re|fle|xi|ons|git|ter das; s, : Beugungsgitter, das aus einer reflektierenden Metallplatte mit in regelmäßigen Abständen eingeritzten Strichen besteht (Phys.) …   Das große Fremdwörterbuch

  • Rowlandsche Reflexionsgitter — Rowlandsche Reflexionsgitter, s. Beugung des Lichtes, S. 779 …   Meyers Großes Konversations-Lexikon

  • Optisches Gitter — Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters …   Deutsch Wikipedia

  • Beugungsgitter — Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters. Optische Gitter, auch Beugungsgitter oder …   Deutsch Wikipedia

  • Geritzte Gitter — Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters. Optische Gitter, auch Beugungsgitter oder …   Deutsch Wikipedia

  • Gitter (Physik) — Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters. Optische Gitter, auch Beugungsgitter oder …   Deutsch Wikipedia

  • Mehrfachspalt — Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters. Optische Gitter, auch Beugungsgitter oder …   Deutsch Wikipedia

  • Stufengitter — Mikroskopaufnahme eines Transmissionsbeugungsgitters, wie es im Röntgensatelliten Chandra (Teleskop) verwendet wurde. Die Gitterkonstante ist 1 µm. Die drei senkrechten Stege sind Teil eines Stützgitters. Optische Gitter, auch Beugungsgitter oder …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”