Riemann-Problem

Riemann-Problem

Als Riemann-Problem (nach Bernhard Riemann) wird in der Analysis ein spezielles Anfangswertproblem bezeichnet, bei dem die Anfangsdaten als konstant definiert werden, bis auf einen Punkt, in welchem sie unstetig sind.

Riemann-Probleme sind sehr hilfreich für das Verständnis hyperbolischer partieller Differentialgleichungen, da in ihnen alle Phänomene wie Schocks, Verdichtungsstöße oder Verdünnungswellen auftauchen. Ebenfalls sind auch für komplizierte nichtlineare Gleichungen wie die Euler-Gleichungen exakte Lösungen konstruierbar, was nicht für beliebige Anfangsdaten möglich ist.

In der numerischen Mathematik tauchen Riemann-Probleme in natürlicher Weise in Finite-Volumen-Verfahren zur Lösung von Erhaltungsgleichungen auf. Dort werden die Riemann-Probleme approximativ mittels so genannter Riemann-Löser angegangen.

Literatur

  • Eleuterio F. Toro: Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer Verlag, Berlin 1999, ISBN 3-540-65966-8.
  • Randall J. LeVeque: Finite-Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge 2004, ISBN 0-521-81087-6.

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Riemann problem — A Riemann problem, named after Bernhard Riemann, consists of a conservation law together with a piecewise constant data having a single discontinuity. The Riemann problemis very useful for the understanding of hyperbolic partial differential… …   Wikipedia

  • Riemann-Hilbert — For the original problem of Hilbert concerning the existence of linear differential equations having a given monodromy group see Hilbert s twenty first problem. In mathematics, Riemann Hilbert problems are a class of problems that arise, inter… …   Wikipedia

  • Riemann solver — A Riemann solver is a numerical method used to solve a Riemann problem. They are heavily used in Computational fluid dynamics and Computational Magnetohydrodynamics.Exact SolversGodunov is credited to introduce the first exact Riemann solver for… …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 …   Wikipedia

  • Riemann integral — In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. While the Riemann integral is unsuitable for many theoretical… …   Wikipedia

  • Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… …   Wikipedia

  • Riemann'sche Hypothese — Die riemannsche Vermutung oder riemannsche Hypothese (nach Bernhard Riemann) ist eine Annahme über die Nullstellen der riemannschen Zetafunktion. Sie besagt, dass alle nichttrivialen Nullstellen dieser komplexwertigen Funktion den Realteil ½… …   Deutsch Wikipedia

  • Riemann'sche Vermutung — Die riemannsche Vermutung oder riemannsche Hypothese (nach Bernhard Riemann) ist eine Annahme über die Nullstellen der riemannschen Zetafunktion. Sie besagt, dass alle nichttrivialen Nullstellen dieser komplexwertigen Funktion den Realteil ½… …   Deutsch Wikipedia

  • Problem of Apollonius — In Euclidean plane geometry, Apollonius problem is to construct circles that are tangent to three given circles in a plane (Figure 1); two circles are tangent if they touch at a single point. Apollonius of Perga (ca. 262 BC ndash; ca. 190 BC)… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”