- Strukturfunktion
-
In der Kern- und Teilchenphysik treten die Strukturfunktionen in inelastischen Streuprozessen an Kernen und Nukleonen (Proton und Neutron) auf. Sie geben an, wie stark die Streuung in Abhängigkeit von der dabei zwischen den Streupartnern übertragenen Energie und dem Impuls ist. Durch ihre Messung lassen sich Rückschlüsse auf die innere Struktur der Stoßpartner ziehen, insbesondere auf die Impulsverteilungen der in den Nukleonen enthaltenen Quarks. Bei elastischen Streuprozessen sind die elektrischen und magnetischen Formfaktoren die Analoga der Strukturfunktionen.
Mithilfe der Strukturfunktionen bei der tief-inelastischen Elektron-Nukleon-Streuung wurde das Partonmodell entwickelt und überprüft, d.h. das Modell für zusammengesetzte Protonen und Neutronen aus Quarks. Außerdem lassen sich der Spin und die elektrische Ladung der Quarks mittels der Strukturfunktionen experimentell bestimmen.
Inhaltsverzeichnis
Experimentelle Bestimmung der Strukturfunktionen
Analog zur Rosenbluth-Formel für elastische Streuprozesse gilt für den doppelt differentiellen Wirkungsquerschnitt
dabei sind
- der Mott-Wirkungsquerschnitt,
- Q2 der übertragene Viererimpuls,
- die übertragene Energie (im Laborsystem),
- θ der Streuwinkel,
- W1,W2 die Strukturfunktionen.
Misst man nun den Wirkungsquerschnitt bei festen Q2 und ν für verschiedene Streuwinkel und trägt in Analogie zum Rosenbluth-Plot tan 2(θ / 2) auf der x-Achse und auf der y-Achse auf, so nimmt der doppelt differentielle Wirkungsquerschnitt die einfache lineare Form
an, wobei W2 der Achsenabschnitt und 2W1 die Steigung sind. Das muss man für viele Werte von Q2 und ν wiederholen um die Strukturfunktionen W1(Q2,ν) und W2(Q2,ν) zu bestimmen.
Dimensionslose Strukturfunktionen
Häufig gibt man statt W1 und W2 die dimensionslosen Strukturfunktionen
an, welche von der Bjorken-Skala x abhängen.
Bei der inelastischen Streuung von Neutrinos an Nukleonen tritt noch eine dritte Strukturfunktion auf, die explizit die Paritätsverletzung der Neutrinos berücksichtigt.
Strukturfunktionen und Partonmodell
Die dimensionslosen Strukturfunktionen F1 und F2 hängen von der Bjorken-Skala x ab, aber nur sehr schwach vom Viererimpulsübertrag Q2 (Skaleninvarianz). Daraus folgt, dass die Nukleonen aus kleineren punktförmigen Teilchen (Partonen) bestehen.
Bestimmung des Quark-Spins
Die dimensionslosen Strukturfunktionen erfüllen die Callan-Gross-Beziehung . Das bedeutet, dass die Partonen Teilchen mit Spin 1/2 sind.
Hätten die Partonen Spin 0, so wäre F1(x) = 0, da diese Strukturfunktion dem magnetischen Formfaktor entspricht.
Bestimmung der elektrischen Ladung der Quarks
Um die drittelzahlige elektrische Ladung der Quarks zu bestimmen, vergleicht man die gemessenen Strukturfunktionen aus der Elektron-Nukleon-Streuung und aus der Neutrino-Nukleon-Streuung miteinander.
- Elektron-Nukleon-Streuung: Da Elektronen nicht an der starken Wechselwirkung teilnehmen, kann die Streuung von Elektronen an Nukleonen nur an der elektrischen Ladung z der Quarks erfolgen. Die Strukturfunktion muss deshalb von z abhängen:
Die Summe läuft über alle relevanten Quarktypen, also u-, d- und s-Quarks. Alle anderen Quarktypen sind zu schwer um beizutragen. zf gibt die elektrische Ladung des jeweiligen Quarktyps in Einheiten der Elementarladung an. qf(x) und bezeichnen die Impulsverteilungen der Quarks und Antiquarks.
- Neutrino-Nukleon-Streuung: Da Neutrinos weder an der starken Wechselwirkung, noch an der elektromagnetischen Kraft teilnehmen, geht die elektrische Ladung der Quarks an dieser Stelle nicht in die Strukturfunktion ein:
Durch Vergleich der Messergebnisse dieser beiden Strukturfunktionen lässt sich die Quarkladung bestimmen. Sie stimmt mit den vorhergesagten drittelzahligen Werten überein.
Wikimedia Foundation.