Temperaturregelung in der Raumfahrt

Temperaturregelung in der Raumfahrt

Als Temperaturkontrollsystem oder Thermalkontrollsystem eines Satelliten oder Raumflugkörpers bezeichnet man alle technischen Systeme und Maßnahmen zur Kontrolle, Steuerung und Regelung der Temperatur an Bord in allen Phasen des Fluges.

Da ein Raumflugkörper dem Vakuum des Weltalls ausgesetzt ist, ist eine Aufnahme und vor allem Abgabe von Energie in Form von Wärme an die Umgebung durch Wärmeleitung nicht möglich. Dies ist einer der wesentlichen Faktoren, die bereits beim Entwurf eines Satelliten berücksichtigt werden müssen, da damit die Temperatur (oder besser das sich einstellende Thermisches Gleichgewicht) eines Satelliten nur durch Einstrahlung und Abstrahlung geregelt werden kann (Siehe auch Grauer- bzw. Schwarzer Strahler). Um zu verhindern, dass einzelne Systeme und Teile des Satelliten oder der gesamte Satellit überhitzen oder einfrieren, ist eine sorgfältige Planung und Regelung notwendig. Je nach Art des Raumflugkörpers (extrem zwischen Sonnen- und Tiefraumsonde) sind zum Teil umfangreiche Maßnahmen zur Verhinderung der Aufnahme oder Entstehung von Wärme oder deren Verlust notwendig.

Inhaltsverzeichnis

Beeinflussung der Temperatur

Um die Temperatur eines Raumflugkörpers oder seiner Systeme zu beeinflussen ist es nur möglich eine der folgende Größen zu ändern:

Möglich ist die Steuerung mit Hilfe von folgenden Maßnahmen:

Ziel der Temperaturregelung ist es, die Bauteile innerhalb des vorgesehenen Temperaturbereichs für Lagerung und Betrieb zu halten sowie ggf. eine geeignete Temperatur für eine menschliche Besatzung.

Die typischen zulässigen Betriebstemperaturen von Satellitenbauteilen unterscheiden sich und liegen für chemische Prozesse bei Triebwerken bei 10 bis 120°C, bei Tanks bei 10 bis 40°C (Einstofftanks), bei Batterien bei -10 bis 25°C, für elektrische Bauteile bei Transpondern bei 10 bis 45°C, bei Erdsensoren bei -10 bis 55° und für mechanische Bauteile bei Drallrädern bei 0 bis 45°C und bei Antennen bei -170 bis 90°C.

Theoretisches Modell der Temperaturveränderung

Um zu vermeiden, dass einzelne Bauteile plötzlich nicht mehr in ihrem vorgesehenen Temperaturbereich sind (Überhitzung, Einfrieren), werden Simulationen durchgeführt. Hierbei wird der Satellit in sogenannte Knoten (als isothermal angenommene Bereiche) aufgeteilt, die miteinander und mit der Umgebung Wärme austauschen. Für jeden dieser Knoten werden die Wärmeaustauschgrößen aufaddiert.

Falls sich der Satellit in einem thermischen Gleichgewicht befindet (sich also nicht mehr erwärmt oder abkühlt und damit die Änderung der Temperatur gegen Null geht), gilt:

\frac{{dT}}{{dt}} = 0 = \frac{1}{{mC_W }} \cdot \sum P

Dabei ist P die Leistung, m die Masse und CW die Wärmekapazität.

Vielfach werden diese numerischen Simulationen durch Tests ergänzt oder abgeschlossen. Dafür finden Thermalvakuumkammern, ggfs. mit Sonnensimulation, Verwendung.

Die Temperaturentwicklung der einzelnen Bestandteile eines Satelliten werden in Erdnähe durch die folgenden Faktoren beeinflusst:

Wärmeaufnahme

Wärme kann durch folgende Quellen aufgenommen werden:

P _{Sonne} = \alpha _{Sat} \cdot A_{eff} S \cdot \cos \varphi
mit Absorptionsgrad αSat (geschluckte Strahlung/Gesamtstrahlung), effektive Fläche bezüglich Sonne Aeff, Solarkonstante S (1372\frac{W}{{m^2 }} ), relativer Winkel φ
  • Albedo (von der Erde reflektiertes Sonnenlicht):
P _{Albedo} = \alpha _{Albedo} A_{eff}  \cdot S \cdot 0,35 \cdot \cos \varphi \left( {\frac{{R_{Erde} }}{{R_{Sat} }}} \right)^2

mit Absorptionsgrad alphaAlbedo, effektive Fläche bezüglich Albedo Aeff, Solarkonstante S, Reflexionsgrad der Albedo, relativer Winkel φ, Erdradius RErde, Bahnradius RSat
mit Emissionsgrad der Erde εErde, die vom Satellit aus sichtbare Fläche der Erde AErde, emittierte Leistung, Winkel bezüglich der Erde φErde
  • Weltraumstrahlung:
P_{Weltraum}  = A \cdot \varepsilon  \cdot \sigma  \cdot T_{Weltraum}^4  \cdot e_{Weltraum}
mit Emissionsgrad des Weltraums ε, Stefan-Boltzmann-Konstante σ, Temperatur des Weltraums TWeltraum= 4 K (meist vernachlässigbar)
  • Dissipation: PDisp
  • Aerodynamische Aufheizung: Bei sehr erd- oder planetennahen Bahnen ist auch eine Energieaufnahme durch Reibung an der Erdatmosphäre (aerodynamische Aufheizung) möglich und mit zu berücksichtigen.

Wärmeübertragung zu anderen Bestandteilen

Die Wärmeübertragung zu anderen Teilen eines Raumflugkörpers kann erfolgen durch:

Wärmeabgabe in den Weltraum

Die einzige Möglichkeit, Wärme im Weltraum wieder abzugeben, ist die Abstrahlung in den Weltraum:

P_{Abstrahlung} = - A \cdot \varepsilon  \cdot \sigma  \cdot T^4

Meist werden dafür spezielle Radiatoren verwendet, die dann nicht dem Sonnenlicht ausgesetzt werden dürfen. Für sonnennahe Missionen kann es erforderlich sein, das gesamte Satellitendesign auf die Gestaltung der Abstrahlflächen abzustimmen.

Literatur

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Thermalkontrolle in der Raumfahrt — Die Temperatur eines Satelliten kann nur durch Einstrahlung und Abstrahlung geregelt werden. Um zu verhindern, dass einzelne Teile des Satelliten überhitzen oder einfrieren ist eine sorgfältige Planung, Regelung und Thermalkontrolle notwendig.… …   Deutsch Wikipedia

  • Raumfahrt (Begriffsklärung) — Raumfahrt bezeichnet: Raumfahrt, Reisen oder Transporte in oder durch den Weltraum Raumfahrt (Sänger), Sachbuch von Eugen Sänger (1963) Geschichte der Raumfahrt Deutsche Raumfahrt Europäische Raumfahrt Raumfahrt der Volksrepublik China… …   Deutsch Wikipedia

  • Raumfahrttechnik: Aufgaben der bemannten Raumfahrt —   Die Erde zu verlassen und zu den Sternen zu fliegen, ist eine Vision, die schon die antiken Griechen in der Ikarus Sage formulierten und die bis Jules Verne immer wieder literarisch gestaltet wurde. Aber der Raumflug wurde erst möglich, nachdem …   Universal-Lexikon

  • Temperaturkontrollsystem — Die Temperatur eines Satelliten kann nur durch Einstrahlung und Abstrahlung geregelt werden. Um zu verhindern, dass einzelne Teile des Satelliten überhitzen oder einfrieren ist eine sorgfältige Planung, Regelung und Thermalkontrolle notwendig.… …   Deutsch Wikipedia

  • Radiator — Ein Radiator ist ein Körper, der Wärme überwiegend durch Wärmestrahlung abgibt. Radiatoren besitzen eine große Oberfläche mit hohem Emissionsgrad und bestehen meist aus einem gut wärmeleitenden Metall. Inhaltsverzeichnis 1 Funktion 2 Kombination… …   Deutsch Wikipedia

  • Regelungstechnik — ist eine Ingenieurwissenschaft, die alle in der Technik vorkommenden Regelungs Vorgänge behandelt. Sie tangiert oder ist Bestandteil zahlreicher anderer Wissenschaften wie Kybernetik, Robotik, Automatisierungstechnik, Prozessinformatik,… …   Deutsch Wikipedia

  • Kosmonautenhund — Laika Die Hündin Laika (russisch Лайка) war das erste Lebewesen, das vom Menschen gezielt in einen Orbit um die Erde befördert wurde. Im Rahmen der Mission Sputnik 2 wurde sie am 3. November 1957 an Bord des sowjetischen Raumflugkörpers ins All… …   Deutsch Wikipedia

  • Lajka — Laika Die Hündin Laika (russisch Лайка) war das erste Lebewesen, das vom Menschen gezielt in einen Orbit um die Erde befördert wurde. Im Rahmen der Mission Sputnik 2 wurde sie am 3. November 1957 an Bord des sowjetischen Raumflugkörpers ins All… …   Deutsch Wikipedia

  • Energieversorgungssystem (Satellit) — Als Energieversorgungssystem oder Bordenergieversorgung eines Satelliten werden alle Systeme zur Erzeugung, Umwandlung, Speicherung und Verteilung von Energie an Bord von Satelliten bezeichnet. Im Englischen wird es Electric power/distribution… …   Deutsch Wikipedia

  • Padparadscha — Saphir blauer Rohsaphir aus Madagaskar Chemische Formel Al2O3 Mineralklasse siehe Korund Kristallsystem …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”