Trockenätzen

Trockenätzen

Unter dem Begriff Trockenätzen fasst man in der Halbleitertechnologie und in der Mikrosystemtechnik eine Gruppe von subtraktiven (abtragenden) Mikrostrukturverfahren zusammen, die nicht auf nasschemischen Reaktionen (wie nasschemisches Ätzen, chemisch-mechanisches Polieren) basieren. Der Materialabtrag (z. B. von Siliciumdioxid auf Silizium-Wafern) erfolgt dabei entweder durch beschleunigte Teilchen (z. B. Argonionen) oder mithilfe plasmaaktivierter Gase. Es werden also je nach Verfahren chemische sowie physikalische Effekte ausgenutzt.

Inhaltsverzeichnis

Einteilung

Die Trockenätz-Verfahren lassen sich in drei Gruppen einordnen. Zum einen die physikalischen Trockenätzverfahren, sie basieren auf dem Materialabtrag durch Beschuss mit Teilchen, zum anderen chemische Trockenätzverfahren, sie basieren auf einer chemischen Reaktion eines meist plasmaaktiverten Gases. Die dritte Gruppe, die physikalisch-chemischen Trockenätzverfahren, fasst Prozesse zusammen, die beide Wirkmechanismen nutzen, und ist so in der Lage, die Nachteile der ersten beiden Gruppen zu minimieren.

Physikalische Trockenätzverfahren

Bei den physikalischen Trockenätzverfahren wird die Oberfläche des Substrates durch den Beschuss von Ionen, Elektronen oder auch Photonen geätzt. Der Beschuss führt zum Zerstäuben des Substratmaterials; die ablaufenden Prozesse sind dabei ähnlich denen bei der Kathodenzerstäubung (Sputtern), das meist nicht zu den Trockenätzverfahren gezählt wird. Die Verfahren werden je nach eingesetzten Teilchen benannt. Die bekanntesten und meist eingesetzten sind: Elektronenstrahlverfahren (engl. electron beam) oder die Laserzerstäubung (engl. laser vaporization). Beide finden unter anderem in der Fotolithografie Anwendung (siehe auch Elektronenstrahlverdampfen und Laserstrahlverdampfen).

Die Ätzung erfolgt allgemein in Hochvakuumkammern, um Wechselwirkungen des Teilchenstrahls mit den Restgasatomen zu verhindern (Streuung usw.). Für strukturierte Proben existieren sowohl Verfahren auf Basis einer Bündelung des Teilchenstrahls, die sehr gezielt ätzen, als auch großflächige Ätzverfahren mit Verwendung einer oberflächlich aufgebrachten Maske (vgl. Fotolithografie, die nicht zu ätzende Bereiche vor dem Teilchenbeschuss schützt.

Betrachtet man Ionenätzverfahren, zeigen sich einige wichtige Nachteile der rein physikalischen Trockenätzverfahren. Sie haben meist eine relativ niedrige Ätzrate, die zudem nur eine geringe Materialselektivität aufweist. Durch das damit verbundene Ätzen der Maske ergeben sich Abrundungen an den Kanten. Des Weiteren sind für das Ätzen hohe Energien notwendig, so dass die Ionen auch tiefer in das Material eindringen. Es wird daher nicht nur oberflächlich geätzt, sondern auch tieferliegende Schichten werden beschädigt. Ein weiterer Nachteil sind parasitäre Abscheidungen (engl. redeposition) der geätzten Teilchen auf dem Substrat und der Maske bzw. den Maskenkanten.

Chemische Trockenätzverfahren

Siehe Hauptartikel Plasmaätzen

Bei den chemischen Trockenätzverfahren (engl. chemical dry etching, CDE) wird eine chemische Reaktion zwischen den neutral Teilchen/Molekülen (meist aber Radikalen) und der Oberfläche des Substrates ausgenutzt. Voraussetzung dafür ist, dass das Reaktionsprodukt genau wie die verwendeten Edukte gasförmig und flüchtig ist, beispielsweise Siliciumtetrafluorid (SiF4) beim Siliciumätzen. Setzt man eine gleichmäßige Zufuhr mit dem Ätzgas voraus, sind diese Verfahren isotrop und je nach verwendeten Materialien zum Teil hoch materialselektiv (ähnlich wie beim nasschemischen Ätzen). Die Reaktionen werden im Allgemeinen in zuvor evakuierten Reaktorkammern durchgeführt. Für den Prozess wird dann das Reaktionsgas in die Kammer eingeleitet, der Prozessdruck beträgt ungefähr 100 Pascal.

Der Ätzprozess selbst verläuft im Prinzip wie folgt. Die neutralen Atome oder Moleküle werden durch ein Plasma in die Reaktionskammer geleitet und strömen über das Substrat (z. B. Silicium-Wafer). Dort reagieren sie mit den an der Oberfläche befindlichen Atomen. Es bilden sich flüchtige, gasförmige Reaktionsprodukte, die über eine Vakuumpumpe abgesaugt werden.

Eine Anwendung war früher die Entfernung von Photoresist durch ein Sauerstoffplasma.

Physikalisch-chemische Trockenätzverfahren

Vergleich der Siliciumdioxid-Ätzprozesse zwischen nasschemischen Ätzen und reaktiven Ionenätzen (RIE)
RIE-Anlage

Siehe Hauptartikel: Plasma-unterstütztes Ätzen

Die physikalisch-chemischen Trockenätzverfahren (engl. physical-chemical dry etching) sind Kombinationen aus physikalischen und chemischen Trockenätzverfahren. Sie haben große Bedeutung bei der Herstellung von modernen integrierten Schaltungen und mikromechanischen Systemen, da mit ihnen sehr feine und auch tiefe Strukturen hergestellt werden können. Für den Ätzprozess ist es wiederum wichtig, dass gasförmige, flüchtige Reaktionsprodukte entstehen.

Die Edukte werden meist über ein Plasma aktiviert oder radikalisiert und anschließend für die Reaktion auf das Substrat geleitet. Dies kann sowohl über Konvektion oder aber durch elektrostatische Beschleunigung der Ionen über ein anliegendes elektrisches Feld erfolgen. Aufgrund der vielfältigen Möglichkeiten der Plasmaerzeugung und der Teilchenbeschleunigung hat sich eine Vielzahl von zum Teil sehr ähnlichen Verfahren gebildet. Die wichtigsten sind derzeit (2008) das reaktive Ionenätzen (engl. reactive ion etching, RIE), dessen Weiterentwicklung zum reaktiven Ionentiefenätzen (engl. deep reactive ion etching, DRIE), das reaktive Ionenstrahlätzen (engl. reactive ion beam etching) sowie das HDP-Ätzen (von engl. high-density plasma etching).

Weblink

Literatur

  • Gary S. May, Simon M. Sze: Fundamentals of Semiconductor Fabrication. Wiley & Sons, 2003, ISBN 0-47145238-6.
  • Dietrich Widmann, Hermann Mader, Hans Friedrich: Technology of Integrated Circuits. Springer, Berlin, ISBN 3-540-66199-9.

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Fotolithografie (Halbleitertechnik) — Die Fotolithografie (auch Photolithographie) ist eine der zentralen Methoden der Halbleiter und Mikrosystemtechnik zur Herstellung von integrierten Schaltungen und weiteren Produkten. Dabei wird mittels der Belichtung das Bild einer Fotomaske auf …   Deutsch Wikipedia

  • Quantendot — Ein Quantenpunkt (engl. quantum dot) ist eine nanoskopische Materialstruktur, meist aus Halbleitermaterial (z. B. InGaAs, CdSe oder auch GaInP/InP). Ladungsträger (Elektronen, Löcher) in einem Quantenpunkt sind in ihrer Beweglichkeit in allen… …   Deutsch Wikipedia

  • Quantum dot — Ein Quantenpunkt (engl. quantum dot) ist eine nanoskopische Materialstruktur, meist aus Halbleitermaterial (z. B. InGaAs, CdSe oder auch GaInP/InP). Ladungsträger (Elektronen, Löcher) in einem Quantenpunkt sind in ihrer Beweglichkeit in allen… …   Deutsch Wikipedia

  • RIE — Plasma unterstütztes Ätzen ( physikalisch chemisches Ätzen) bezeichnet eine Gruppe von subtraktiven (abtragenden) Mikrostrukturverfahren in der Halbleitertechnologie. Als Trockenätzverfahren stellen eine alternative Strukturierungverfahren zu dem …   Deutsch Wikipedia

  • Reaktives Ionenätzen — Plasma unterstütztes Ätzen ( physikalisch chemisches Ätzen) bezeichnet eine Gruppe von subtraktiven (abtragenden) Mikrostrukturverfahren in der Halbleitertechnologie. Als Trockenätzverfahren stellen eine alternative Strukturierungverfahren zu dem …   Deutsch Wikipedia

  • Fluoroform — Strukturformel Allgemeines Name Fluoroform Andere Namen …   Deutsch Wikipedia

  • Halbleitertechnik — Die Halbleitertechnik definiert sich historisch und aufgrund der Verwendung der Produkte als Schlüsselkomponenten in elektrotechnischen Erzeugnissen als Teilgebiet der Elektrotechnik (speziell der Mikroelektronik). Trifft man die Zuordnung… …   Deutsch Wikipedia

  • Halbleitertechnologie — Die Halbleitertechik definiert sich historisch und aufgrund der Verwendung der Produkte als Schlüsselkomponenten in elektrotechnischen Erzeugnissen als Teilgebiet der Elektrotechnik. Trifft man die Zuordnung aufgrund der eingesetzten Methoden und …   Deutsch Wikipedia

  • LOCOS-Prozess — LOCOS, kurz für englisch Local Oxidation of Silicon (dt. »lokale Oxidation von Silicium«, ist in der Halbleitertechnik ein Verfahren zur elektrischen Isolation von Bauelementen (meist Transistoren). Dafür wird der Silicium Wafer an… …   Deutsch Wikipedia

  • Mikromechanik — Die Mikromechanik ist der Bereich der Mikrosystemtechnik, der sich mit Konstruktion, Herstellung und Anwendung mechanischer Bauelemente mit Abmessungen von wenigen bis mehreren 100 µm befasst. Man unterscheidet einfache Strukturen (z. B …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”