Trägermenge

Trägermenge

Die Trägermenge ist ein Begriff der abstrakten Algebra. Mit Trägermenge bezeichnet man die Menge, aus der mit Hilfe einer Menge von Verknüpfungen eine algebraische Struktur gebildet wird. Ein Beispiel einer Trägermenge ist die Menge G, aus der die Elemente einer Gruppe (G;\circ,e) stammen.

Meistens benennt man die Struktur nach ihrer Trägermenge. Dies macht es aber oft notwendig die Struktur so zu kennzeichnen, dass einerseits die Zugehörigkeit zur Trägermenge erkennbar ist und andererseits beide Bezeichnungen nicht verwechselt werden können.

Mögliche Arten der Notation sind:

  • Unterstreichen: \underline {G} = (G;\circ,e)
  • kalligraphische Symbole: \mathcal {G} = (G;\circ,e)
  • Fraktur: \mathfrak {G} = (G;\circ,e)

Dabei erweisen sich die beiden Varianten Fraktur und Kalligraphie als unhandlich, da sie kaum jemand effizient beherrscht; hingegen lässt sich ein Unterstrich schnell und einfach setzen.


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Intervall (Mathematik) — Als Intervall wird in der Analysis, der Ordnungstopologie und verwandten Gebieten der Mathematik eine „zusammenhängende“ Teilmenge einer total (oder linear) geordneten Trägermenge bezeichnet. Das Intervall besteht aus allen Elementen x, die man… …   Deutsch Wikipedia

  • Algebraische Struktur — Der Begriff algebraische Struktur, missverständlich auch „universelle Algebra“, „allgemeine Algebra“ oder „Algebra“ genannt, bezeichnet ein mathematisches Objekt. Das Synonym allgemeine Algebra bezeichnet gleichzeitig auch den Teilbereich der… …   Deutsch Wikipedia

  • Allgemeine Algebra — Der Begriff algebraische Struktur, missverständlich auch „universelle Algebra“, „allgemeine Algebra“ oder „Algebra“ genannt, bezeichnet ein mathematisches Objekt. Das Synonym allgemeine Algebra bezeichnet gleichzeitig auch den Teilbereich der… …   Deutsch Wikipedia

  • Universelle Algebra — Der Begriff algebraische Struktur, missverständlich auch „universelle Algebra“, „allgemeine Algebra“ oder „Algebra“ genannt, bezeichnet ein mathematisches Objekt. Das Synonym allgemeine Algebra bezeichnet gleichzeitig auch den Teilbereich der… …   Deutsch Wikipedia

  • Ajtai-Fagin-Spiele — Ehrenfeucht Fraïssé Spiele (EF Spiele) sind eine Beweistechnik der Modelltheorie. Durch EF Spiele lässt sich die Äquivalenz zweier Strukturen zeigen bzw. widerlegen. Strukturen dienen in der beschreibenden Komplexitätstheorie meist als… …   Deutsch Wikipedia

  • Binar — berührt die Spezialgebiete Mathematik Abstrakte Algebra Gruppentheorie Kategorientheorie umfasst als Spezialfälle Halbgruppe (Axiome EA) Monoid (EAN) Gruppe (EANI) Abels …   Deutsch Wikipedia

  • EF-Spiel — Ehrenfeucht Fraïssé Spiele (EF Spiele) sind eine Beweistechnik der Modelltheorie. Durch EF Spiele lässt sich die Äquivalenz zweier Strukturen zeigen bzw. widerlegen. Strukturen dienen in der beschreibenden Komplexitätstheorie meist als… …   Deutsch Wikipedia

  • EF-Spiele — Ehrenfeucht Fraïssé Spiele (EF Spiele) sind eine Beweistechnik der Modelltheorie. Durch EF Spiele lässt sich die Äquivalenz zweier Strukturen zeigen bzw. widerlegen. Strukturen dienen in der beschreibenden Komplexitätstheorie meist als… …   Deutsch Wikipedia

  • Ehrenfeucht-Fraisse Spiel — Ehrenfeucht Fraïssé Spiele (EF Spiele) sind eine Beweistechnik der Modelltheorie. Durch EF Spiele lässt sich die Äquivalenz zweier Strukturen zeigen bzw. widerlegen. Strukturen dienen in der beschreibenden Komplexitätstheorie meist als… …   Deutsch Wikipedia

  • Ehrenfeucht-Fraïssé-Spiel — Ehrenfeucht Fraïssé Spiele (EF Spiele) sind eine Beweistechnik der Modelltheorie. Durch EF Spiele lässt sich die Äquivalenz zweier Strukturen zeigen bzw. widerlegen. Strukturen dienen in der beschreibenden Komplexitätstheorie meist als… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”