- Benutzer-Modus
-
Der Ring, auch Domain genannt, bezeichnet im Umfeld der Betriebssystem-Programmierung und des Multitaskings eine Privilegierungs- bzw. Sicherheitsstufe eines Prozesses. Diese schränkt den Prozess in dem auf der CPU nutzbaren Befehlssatz und Speicherbereich ein. Die Nutzung von Privilegierungsebenen ist sinnvoll, um die Hardware zu abstrahieren und um Prozesse voneinander abzuschotten.
Inhaltsverzeichnis
Umsetzung
Der Befehlssatz wird für unprivilegierte Prozesse derart eingeschränkt, dass sie nicht direkt auf die Hardware zugreifen können und sich auch nicht aus ihrer Privilegierungsebene befreien können. Der Zugriff auf den Speicherbereich anderer Prozesse wird durch Speichervirtualisierung verhindert. Somit wird gewährleistet, dass Prozesse z. B. im Ring 3 in keinem Fall Prozesse im Ring 0 oder auch andere Prozesse im Ring 3 beeinflussen können. Da die unprivilegierten Prozesse nicht auf Hardware direkt zugreifen können, existieren sogenannte „Gates“ als Zugangstore im Speicher auf den darunterliegenden Ring, um auf die Programmierschnittstelle des Betriebssystemkerns die notwendigen Aktionen anzufordern.
Prozesse im Ring 0 befinden sich im sogenannten Kernel-Modus (engl. „kernel mode“) – alle anderen im Benutzer-Modus (engl. „user mode“). Jeder Wechsel von einem Ring zum anderen erfordert in der CPU einen Kontext-Wechsel, der einige Rechenzeit in Anspruch nimmt.
Voraussetzung
Die CPU muss extern oder intern über eine MMU (Speicher-Verwaltungseinheit, engl. „Memory Management Unit“) verfügen, die sowohl die Umsetzung zwischen virtuellen und physikalischen Speicheradressen vornimmt, als auch die Auswertung der Deskriptoren der virtuellen Speicherseiten. Darüber hinaus muss die CPU über die Möglichkeit verfügen, den zuletzt ausgeführten Befehl zu wiederholen: Bei einer Zugriffsverletzung – ein Prozess greift auf nicht zugelassene Befehle oder Speicherseiten zu, die nicht physikalisch vorhanden sind – wird ein Interrupt ausgelöst, dessen Ursache das Betriebssystem auswerten muss und gegebenenfalls den letzten Befehl wiederholt.
Diese Berechtigungsmodi werden sowohl von x86-Prozessoren (ab 80286) als auch von RISC-Prozessoren und anderen Typen unterstützt.
x86-Systeme
Intel 80286-kompatible Prozessoren unterscheiden vier Privilegierungsstufen: Ring 0, 1, 2 und 3. Dabei stellt Ring 0, genannt „supervisor mode“, die höchste Privilegierungsstufe dar, die bis zur Stufe 3 (Ring 3) immer weiter eingeschränkt wird. Beispiele für Assembler-Anweisungen, die im Ring 0, jedoch nicht im Ring 3 ausgeführt werden dürfen sind z. B. „cli“ und „sti“. Mit diesen Anweisungen wird die Behandlung eines bestimmten Interrupts ab- bzw. eingeschaltet.
Um Prozesse in einem geschützten Bereich (Ring > 0) ablaufen zu lassen, wird der physikalische Arbeitsspeicher in virtuelle Speicherseiten aufgeteilt. Zu jeder Speicherseite existiert eine Tabelle, in der unter anderem gespeichert ist, in welchem Level (Ring) der Programmcode, der innerhalb dieser Speicherseite gespeichert ist, ausgeführt wird. Diese Auswertung nimmt die MMU meist extern vor.
Mit der Einführung des AMD64-Opcodes, den auch Intel für einige seiner Prozessoren als Intel 64 übernommen hat, existiert im Speicherseitendeskriptor zusätzlich das NX-Flag (engl. „No eXecution“), das eine Unterscheidung zwischen Daten und Programmcode ermöglicht, um so Sicherheitslücken durch Pufferüberläufe vorzubeugen. Der Pufferüberlauf wird zwar nicht direkt verhindert, Programmcode in Datenseiten kann dabei aber nicht ausgeführt werden.
Betriebssysteme auf x86
Die verbreiteten Betriebssysteme für x86 (dazu gehören Linux und Windows) nutzen lediglich 2 der 4 möglichen CPU-Ringe. Im Ring 0 werden der Kernel und alle Hardwaretreiber ausgeführt, während die Anwendungssoftware im unprivilegierten Ring 3 arbeitet. Damit bleibt die Portabilität des Betriebssystems auch auf Prozessorarchitekturen gewährleistet die nur 2 Ringe unterscheiden können. OS/2 benutzt allerdings Ring 2 für Grafiktreiber.[1]
Die verstärkt verwendeten Virtualisierungslösungen verwenden auch Ring 1. Hierbei wird der Betriebssystemkern aus Ring 0 in Ring 1 verschoben, der „Hypervisor“ residiert dann als darüberliegende Schicht in Ring 0 und verwaltet einen oder mehrere in Ring 1 laufende Betriebssystemkerne. Dies kann allerdings auch durch Rootkits ausgenutzt werden, um Schadcode unbemerkt vom Anwender auf dem Ring 0 ausführen zu lassen (siehe auch Virtual Machine Based Rootkit).
Nicht x86-Systeme
Die bei x86-Prozessoren vorgenommene Einteilung in 4 Ringe wurde schon früher eingesetzt, z. B. bei der VAX. Der Alpha-Prozessor unterstützt einen zusätzlichen geschützten Bereich für dessen PAL-Code, welcher als Ring -1 aufgefasst werden könnte. Die Honeywell 6180, das erste System mit Hardware-Unterstützung für dieses Konzept, kannte 8 Ringe.
Bei vielen aktuellen Prozessoren wird oft nur zwischen Supervisor- („alles ist möglich“) und User-Modus (eingeschränkte Zugriffe auf Speicherbereiche/Systemresourcen/CPU-Register) unterschieden. Der Schutz des Arbeitsspeichers erfolgt über die Seitenverwaltungseinheit der CPU.
Dieses Prinzip lässt sich auch auf x86-Systemen anwenden, indem der Speicher über die Segmentierung als Flat Memory angelegt wird. Dabei läuft die CPU nur in den Privilegierungsstufen 0 und 3.
Einzelnachweise
- ↑ Presentation Device Driver Reference for OS/2 auf warpspeed.com (englisch)
Siehe auch
- Hauptprozessor (CPU)
- Multitasking
- Memory Management Unit (MMU)
- Betriebssystemkern (Kernel)
- Schutzmodus
Wikimedia Foundation.