Cramér-von-Mises-Test

Cramér-von-Mises-Test

Der Cramér-von-Mises-Test ist ein statistischer Test, mit dem untersucht werden kann, ob die Häufigkeitsverteilung der Daten einer Stichprobe von einer vorgegebenen hypothetischen Wahrscheinlichkeitsverteilung abweicht (Ein-Stichproben-Fall), oder ob die Häufigkeitsverteilungen von zwei verschiedenen Stichproben voneinander abweichen (Zwei-Stichproben-Fall). Beim Vergleich der Verteilung einer Stichprobe mit der Normalverteilung fungiert das Verfahren als Normalitätstest. Der Test ist benannt nach Harald Cramér und Richard von Mises, die ihn zwischen 1928 und 1930 entwickelt und veröffentlicht haben. Die Verallgemeinerung für den Zwei-Stichproben-Fall wurde 1962 von Theodore Wilbur Anderson beschrieben.

Testbeschreibung

Für den Vergleich der Häufigkeitsverteilung einer Stichprobe mit einer vorgegebenen hypothetischen Wahrscheinlichkeitsverteilung berechnet sich die Testgröße T aus den aufsteigend sortierten Stichprobenwerten x_1,x_2,\cdots,x_n und der Verteilungsfunktion F der vorgegebenen Wahrscheinlichkeitsverteilung nach der Formel

T = n \omega^2 = \frac{1}{12n} + \sum_{i=1}^n \left[ \frac{2i-1}{2n}-F(x_i) \right]^2.

Aus dem Vergleich der Testgröße T mit entsprechenden Tabellenwerten ergibt sich der p-Wert. Die Nullhypothese des Tests im Ein-Stichproben-Fall ist die Annahme, dass sich die Verteilung der Stichprobendaten nicht von der vorgegebenen Wahrscheinlichkeitsverteilung unterscheidet. Ein p-Wert kleiner als 0,05 ist somit als statistisch signifikante Abweichung der Verteilung der Stichprobenwerte von der vorgegebenen Wahrscheinlichkeitsverteilung zu interpretieren.

Für den Vergleich der Häufigkeitsverteilungen von zwei verschiedenen Stichproben berechnet sich die Testgröße T nach den Formeln

T = N \omega^2 = \frac{U}{N M (N+M)}-\frac{4 M N - 1}{6(M+N)}

mit

U = N \sum_{i=1}^N (r_i-i)^2 + M \sum_{j=1}^M (s_j-j)^2

Dabei sind, jeweils aufsteigend sortiert, x_1,x_2,\cdots,x_N die Werte in der ersten und y_1,y_2,\cdots,y_M die Werte in der zweiten Stichprobe sowie r_1,r_2,\cdots,r_N die Ränge der Werte der ersten Stichprobe und s_1,s_2,\cdots,s_M die Ränge der Werte der zweiten Stichprobe in einer gemeinsamen Rangfolge beider Stichproben.

Der p-Wert ergibt sich analog zum Ein-Stichproben-Fall aus dem Vergleich der Testgröße T mit entsprechenden Tabellen. Die Nullhypothese des Cramér-von-Mises-Tests im Zwei-Stichproben-Fall ist die Annahme, dass sich die Häufigkeitsverteilungen beider Stichproben nicht unterscheiden. Ein p-Wert kleiner als 0,05 bedeutet deshalb einen statistisch signifikanten Unterschied zwischen den Verteilungen der Werte beider Stichproben.

Alternative Verfahren

Der Kolmogorow-Smirnow-Test stellt sowohl für den Ein-Stichproben-Fall als auch für den Zwei-Stichproben-Fall eine Alternative zum Cramér-von-Mises-Test dar, der allerdings insbesondere für den Zwei-Stichproben-Fall als teststärker gilt. Eine weitere Alternative zum Cramér-von-Mises-Test für den Ein-Stichproben-Fall ist der Anderson-Darling-Test. Für die spezielle Anwendung als Normalitätstest können unter anderem auch der Shapiro-Wilk-Test, der Jarque-Bera-Test und der Lilliefors-Test als alternative Verfahren genutzt werden.

Literatur

  • Theodore Wilbur Anderson: On the Distribution of the Two-Sample Cramer-von Mises Criterion. In: The Annals of Mathematical Statistics. 33(3)/1962. Institute of Mathematical Statistics, ISSN 0003-4851, S. 1148−1159
  • Cramér–von-Mises Test. In: Zakkula Govindarajulu: Nonparametric Inference. World Scientific, Hackensack NJ 2007, ISBN 9-81-270034-X, S. 187−189

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Cramér–von Mises criterion — In statistics the Cramér–von Mises criterion is a criterion used for judging the goodness of fit of a cumulative distribution function F * compared to a given empirical distribution function Fn, or for comparing two empirical distributions. It is …   Wikipedia

  • Cramér-von-Mises criterion — In statistics the Cramér von Mises criterion is a form of minimum distance estimation used for judging the goodness of fit of a probability distribution F^* compared to a given distribution F is given by:n W^2 = n int { infty}^{infty} [F(x)… …   Wikipedia

  • Richard von Mises — Infobox Scientist name = Richard von Mises box width = image width =150px caption = Richard von Mises birth date = 19 April 1883 birth place = Lemberg death date = 14 July 1953 death place = Boston residence = citizenship = nationality =… …   Wikipedia

  • Test de kolmogorov-smirnov — En statistiques, le test de Kolmogorov Smirnov est un test d hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi. Sommaire 1 …   Wikipédia en Français

  • Test (statistique) — Pour les articles homonymes, voir Test. En statistiques, un test d hypothèse est une démarche consistant à rejeter ou à ne pas rejeter (rarement accepter) une hypothèse statistique, appelée hypothèse nulle, en fonction d un jeu de données… …   Wikipédia en Français

  • Test de normalité — En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d adéquation (ou tests d ajustement, tests permettant de comparer des …   Wikipédia en Français

  • Test de Kolmogorov-Smirnov — En statistiques, le test de Kolmogorov Smirnov est un test d hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi. Sommaire 1 …   Wikipédia en Français

  • Anderson-Darling test — The Anderson Darling test, named after Theodore Wilbur Anderson, Jr. (1918 ndash;?) and Donald A. Darling (1915 ndash;?), who invented it in 1952 [cite journal | first = T. W. | last = Anderson | author link = Theodore W. Anderson, Jr. coauthors …   Wikipedia

  • Harald Cramér — (* 25. September 1893; † 5. Oktober 1985) war ein schwedischer Mathematiker und Statistiker. Cramér lehrte von 1929 bis 1958 als Professor an der Universität Stockholm, deren Rektor bzw. später Universitätsk …   Deutsch Wikipedia

  • Shapiro-Wilk-Test — Der Shapiro Wilk Test ist ein statistischer Signifikanztest, der die Hypothese überprüft, dass die zugrunde liegende Grundgesamtheit einer Stichprobe normalverteilt ist. Die Nullhypothese H0 nimmt an, dass eine Normalverteilung der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”