Poröses Silicium

Poröses Silicium

Poröses Silicium (abgekürzt pSi) ist eine Form des chemischen Elements Silicium. Die namengebende Besonderheit liegt in der nanoporösen Struktur, das heißt, die Poren haben eine Größe im Bereich von 10−9 bis 10–7 m. Hieraus resultiert ein besonders hohes Oberflächen-Volumen-Verhältnis im Bereich von bis zu 500 m2/cm3. Auf Grund seiner speziellen optischen und elektrischen Eigenschaften ist poröses Silicium für die Herstellung von Solarzellen, sowie von Akkus[1] geeignet[2].

Inhaltsverzeichnis

Geschichte

Poröses Silicium wurde 1956 von Arthur Uhlir Jr. und Ingeborg Uhlir entdeckt, die damals in den Bell Laboratories in den USA an einem Verfahren arbeiteten, mit dem die Oberfläche von Silicium und Germanium geformt und poliert werden konnte. Dabei entdeckten sie, dass sich unter geeigneten Bedingungen ein dicker schwarzer, roter oder brauner Film auf der Materialoberfläche bildet. Diese Ergebnisse wurden jedoch nur in einer Labornotiz erwähnt und nicht weiter verfolgt.[3]

Drei Jahrzehnte später vermutete Leigh Canham, der zu diesem Zeitpunkt bei der Defence Research Agency in England beschäftigt war, in porösem Silicium Quantenconfinement-Effekte, welche 1990 experimentell verifiziert werden konnten.[4] Erst dadurch wurde das Interesse der Wissenschaft an den nicht linearen optischen sowie den elektrischen Eigenschaften des Materials geweckt.

Herstellung

Anodisierung

Eine Möglichkeit, poröses Silicium herzustellen, ist die anodische Oxidation. Dabei wird typischerweise Platin als Kathodenmaterial eingesetzt, Silicium als Anode und Wasserstofffluorid (HF) als Elektrolyt. Während das Anlegen eines Gleichstroms zu einer homogeneren Schicht porösen Siliciums führt, ist Wechselstrom geeigneter für die Bildung von Siliciumwafern mit einer Dicke von über 50 µm. Durch die Bildung von Wasserstoffgas können bei diesem Prozess stärkere Inhomogenitäten entstehen. Um diesem entgegenzuwirken wird dem Elektrolyten Ethanol (mind. 15 %) zugesetzt. Dadurch kann die Homogenität signifikant gesteigert werden.

Ätzen

Außerdem kann poröses Silicium durch das Ätzen mit Fluorwasserstoffsäure (HF), Salpetersäure (HNO3) und Wasser hergestellt werden.[5] Dieses Verfahren ist insbesondere attraktiv auf Grund seiner Einfachheit und der breiten Verfügbarkeit der nötigen Materialien. Auch bei der Herstellung von besonders dünnen pSI-Filmen ist dieses Verfahren sehr nützlich; Schichtdicken von nur 25 Ångström sind auf diese Weise herstellbar.[6]

Trocknen

Bei einfacher Trocknung durch Verdunstung treten aufgrund der Kapillarspannung, welche proportional zur Krümmung der Grenzfläche ist, ab einer bestimmten Schichtdicke Risse auf. Daher sind Verfahren entwickelt worden, die das Risiko beim Trocknen von pSi minimieren sollen.[7] Überkritische Trocknung gilt als effektivste Trockentechnik, da in deren Verlauf die Grenzfläche völlig verschwindet, ist allerdings relativ teuer. Bei der Pentantrocknung wird das Wasser erst durch Pentan ersetzt, das eine geringere Oberflächenspannung hat als Wasser. Beim anschließenden Trocknen treten nur geringe Spannungen auf.

Eigenschaften

Explosivität

2001 hat eine Arbeitsgruppe der TU München zufällig entdeckt, dass mit flüssigem Sauerstoff getränktes hydriertes pSi hochexplosiv ist und seine Sprengkraft jene von TNT übertrifft.[8]. Andere Oxidationsmittel vermeiden die Notwendigkeit sehr tiefer Temperaturen und machen die Handhabung sicherer.

Optische Eigenschaften

Der Brechungsindex, sowie die daraus resultierenden optischen Eigenschaften, eines Materials hängt unter anderem von der Porosität und dem Medium innerhalb der Poren ab. Der Brechungsindex von porösem Silicium kann damit deutlich von dem anderer Siliciumarten abweichen.[9]

Einzelnachweise

  1. Poröses Silicium in der Akkutechnik. Heise.de. Abgerufen am 3. September 2010.
  2. Poröses Silicium in der Photovoltaikindustrie. Institut für Solarenergieforschung Hameln. Abgerufen am 3. September 2010.
  3. L. T. Canham: A glowing future for silicon. New Scientist, 1993.
  4. Friedemann Völklein, Thomas Zetterer, Praxiswissen Mikrosystemtechnik, Vieweg + Teubner, S. 17
  5. Herstellung durch Ätzen. Forschungszentrum Jülich. Abgerufen am 3. September 2010.
  6. J. L. Coffer: Porous silicon formation by stain etching. Iin Properties of Porous Silicon. Canham, LT, Institution of Engineering and Technology, London 1997, S. 23–28.
  7. Trocknen von porösem Silicium. Forschungszentrum Jülich. Abgerufen am 3. September 2010.
  8. pSi als Sprengstoff. Wissenschaft.de. Abgerufen am 3. September 2010.
  9. Brechungsindex von pSi. Refractive Index Database. Abgerufen am 3. September 2010.

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Silicium — Eigenschaften …   Deutsch Wikipedia

  • poröses Silizium — akytasis silicis statusas T sritis radioelektronika atitikmenys: angl. porous silicon vok. poröses Silizium, n rus. пористый кремний, m pranc. silicium poreux, m …   Radioelektronikos terminų žodynas

  • silicium poreux — akytasis silicis statusas T sritis radioelektronika atitikmenys: angl. porous silicon vok. poröses Silizium, n rus. пористый кремний, m pranc. silicium poreux, m …   Radioelektronikos terminų žodynas

  • Polysilizium — Eigenschaften …   Deutsch Wikipedia

  • Silizium — Eigenschaften …   Deutsch Wikipedia

  • Solarsilizium — Eigenschaften …   Deutsch Wikipedia

  • Explosivmittel — Gefahrensymbol E für explosionsgefährliche Stoffe ADR Gefahrgutkl …   Deutsch Wikipedia

  • Ladedichte — Gefahrensymbol E für explosionsgefährliche Stoffe ADR Gefahrgutkl …   Deutsch Wikipedia

  • Normalgasvolumen — Gefahrensymbol E für explosionsgefährliche Stoffe ADR Gefahrgutkl …   Deutsch Wikipedia

  • Spezifisches Schwadenvolumen — Gefahrensymbol E für explosionsgefährliche Stoffe ADR Gefahrgut …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”